版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实际问题与二次函数实际问题与二次函数 生活是数学的源泉,生活是数学的源泉,我们是数学学习的主人我们是数学学习的主人.如何获得最大利润问题如何获得最大利润问题 学习目标:1、能够分析和表示实际问题中变量之间的二次函数关系,并能够利用二次函数的知识解决实际问题中的最值问题解决实际问题中的最值问题。2、经历经历探索商品售价问题最值过程最值过程,体会二次函数是解决最优化问题的数学模型,进一步获得利用数学方法解决实际问题的经验,感受数学的应用价值感受数学的应用价值。如何获得最大利润问题如何获得最大利润问题 重难点: 重点:利用二次函数解决利用二次函数解决商品售价实际问题实际问题。 难点:能表示实际问题中
2、变量之间的二次函 数关系,感受数学模型感受数学模型思想及数学的实际价思想及数学的实际价值值。 在日常生活中存在着许许多多的与数学知识有关的在日常生活中存在着许许多多的与数学知识有关的实际问题。如繁华的商业城中很多人在买卖东西。实际问题。如繁华的商业城中很多人在买卖东西。 如果你去买商品,你会选买哪一家的?如果你是商场经理,如果你去买商品,你会选买哪一家的?如果你是商场经理,如何定价才能使商场获得最大利润呢?如何定价才能使商场获得最大利润呢? 2 . 二次函数y=ax2+bx+c的图象是一条 ,它的对称轴是 ,顶点坐标是 . 当a0时,抛物线开口向 ,有最 点,函数有最 值,是 ;当 a0时,抛
3、物线开口向 ,有最 点,函数有最 值,是 。抛物线abacab44,22abx2直线abac442上小下大abac442高低 1. 二次函数y=a(x-h)2+k的图象是一条 ,它的对称轴是 ,顶点坐标是 .抛物线直线x=h(h,k)基础扫描 3. 二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 。当x= 时,y的最 值是 。 4.二次函数y=-2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最 值,是 。直线x=3(3 ,5)3小5直线x=-2(-2 ,1)-2大17基础扫描 问题问题1.已知某商品的进价为每件已知某商品的进价为每件40元,售价是每件元,售价是每件 60
4、元,每星期可卖出元,每星期可卖出300件。市场调查反映:如果调件。市场调查反映:如果调整价格整价格 ,每涨价,每涨价1元,每星期要少卖出元,每星期要少卖出10件。件。要想获要想获得得6090元的利润,该商品应定价为多少元?元的利润,该商品应定价为多少元?分析:没调价之前商场一周的利润为 元;设销售单价上调了x元,那么每件商品的利润可表示为 元,每周的销售量可表示为 件,一周的利润可表示为元, 要想获得6090元利润可列方程 6000 (20+x)(300-10 x) (20+x)( 300-10 x) (20+x)( 300-10 x) =6090 自主探究 已知某商品的进价为每件已知某商品的
5、进价为每件40元,售价是每件元,售价是每件 60元,每星期可卖出元,每星期可卖出300件。市场调查反映:件。市场调查反映:如果调整价格如果调整价格 ,每涨价,每涨价1元,每星期要少卖出元,每星期要少卖出10件。件。要想获得要想获得6090元的利润,该商品应定价元的利润,该商品应定价为多少元?为多少元? 若设销售单价x元,那么每件商品的利润可表示为 元,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程 . (x-40)300-10(x-60) (x-40)300-10(x-60)=6090问题问题2.已知某商品的已知某商品的进价进价为每件为每件4040元,元,售售
6、价价是每件是每件6060元,每星期可卖出元,每星期可卖出300300件。市件。市场调查反映:如调整价格场调查反映:如调整价格 ,每,每涨价涨价一元,一元,每星期要每星期要少卖少卖出出1010件。件。该商品应定价为多该商品应定价为多少元时,商场能获得少元时,商场能获得最大利润最大利润?合作交流问题问题3.已知某商品的已知某商品的进价进价为每件为每件4040元。现在元。现在的的售价售价是每件是每件6060元,每星期可卖出元,每星期可卖出300300件。件。市场调查反映:如调整价格市场调查反映:如调整价格 ,每每降价降价一元,一元,每星期可每星期可多卖多卖出出2020件。如何定价才能使件。如何定价才
7、能使利润利润最大最大?问题问题4.4.已知某商品的已知某商品的进价进价为每件为每件4040元。现在元。现在的的售价售价是每件是每件6060元,每星期可卖出元,每星期可卖出300300件。件。市场调查反映:如调整价格市场调查反映:如调整价格 ,每,每涨价涨价一元,一元,每星期要每星期要少卖少卖出出1010件;件;每每降价降价一元,每星期一元,每星期可可多卖多卖出出2020件。如何定价才能使件。如何定价才能使利润最大利润最大? 正常 40 60 20 300 300*20 上涨 40 60+x 20+x 300-10 x y=(20+x)(300-10 x) 下跌 40 60-x 20-x 300
8、+20 x y=(20-x)(300+20 x)注:售价x均为涨了或跌了多少,并非涨到或跌到多少。 要能有所区分! 成本 售价 利润 销量 关系式解:设每件涨价为解:设每件涨价为x元时获得的总利润为元时获得的总利润为y元元.y =(60-40+x)(300-10 x) =(20+x)(300-10 x) =-10 x2+100 x+6000 =-10(x2-10 x ) +6000 =-10(x-5)2-25 +6000 =-10(x-5)2+6250当当x=5时,时,y的最大值是的最大值是6250.定价定价:60+5=65(元)(元)(0 x30)怎样确定x的取值范围解解:设每件降价设每件降
9、价x元时的总利润为元时的总利润为y元元.y=(60-40-x)(300+20 x) =(20-x)(300+20 x) =-20 x2+100 x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 (0 x20)所以定价为所以定价为60-2.5=57.5时利润最大时利润最大,最大值为最大值为6125元元. 答答:综合以上两种情况,定价为综合以上两种情况,定价为65元时可元时可 获得最大利润为获得最大利润为6250元元.由由(2)(3)的讨论及现在的销售的讨论及现在的销售情况情况,你知道应该如何定价能你知道应该如何定价能使利润最大了吗使利润最大了吗?怎样确定x的取值范
10、围w 某商店购进一批单价为某商店购进一批单价为2020元的日用品元的日用品, ,如果以单价如果以单价3030元销售元销售, ,那么半个月内可以售出那么半个月内可以售出400400件件. .根据销售经验根据销售经验, ,提提高单价会导致销售量的减少高单价会导致销售量的减少, ,即销售单价每提高即销售单价每提高1 1元元, ,销销售量相应减少售量相应减少2020件件. .售价售价提高多少元时提高多少元时, ,才能在半个月内才能在半个月内获得最大利润获得最大利润? ?解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20 x) =-20 x2+200 x+4000 =
11、-20(x-5)2+4500 当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元。我来当老板牛刀小试反思感悟 通过本节课的学习,你有什么收获? 能否用列表的方法将价格上涨或下跌与销售量之间构成的二次函数关系表示出来。并分析出何时去取最大利润?v作业:练习册P48-49课堂寄语 二次函数是一类最优化问题的数二次函数是一类最优化问题的数学模型,能指导我们解决生活中的实学模型,能指导我们解决生活中的实际问题,同学们,认真学习数学吧,际问题,同学们,认真学习数学吧,因为数学来源于生活,更能优化我们因为数学来源于生活,更能优化我们的生活。的生活。 某果园有某果园有1001
12、00棵橙子树棵橙子树, ,每一棵树平每一棵树平均结均结600600个橙子个橙子. .现准备多种一些橙子现准备多种一些橙子树以提高产量树以提高产量, ,但是如果多种树但是如果多种树, ,那么树那么树之间的距离和每一棵树所接受的阳光就之间的距离和每一棵树所接受的阳光就会减少会减少. .根据经验估计根据经验估计, ,每多种一棵树每多种一棵树, ,平平均每棵树就会少结均每棵树就会少结5 5个橙子个橙子. .若每个橙子若每个橙子市场售价约市场售价约2 2元,问增种多少棵橙子树,元,问增种多少棵橙子树,果园的总产值最高,果园的总产值最高果园的总产值最高,果园的总产值最高约为多少?约为多少?创新学习1.已知
13、某商品的进价为每件已知某商品的进价为每件4040元。现在的售价元。现在的售价是每件是每件6060元,每星期可卖出元,每星期可卖出300300件。市场调查件。市场调查反映:如调整价格反映:如调整价格 ,每涨价一元,每星期要,每涨价一元,每星期要少卖出少卖出1010件;每降价一元,每星期可多卖出件;每降价一元,每星期可多卖出2020件。如何定价才能使利润最大?件。如何定价才能使利润最大? 在上题中在上题中,若商场规定试销期间获利不得低于若商场规定试销期间获利不得低于40%又不得高于又不得高于60%,则销售单价定为多少时,则销售单价定为多少时,商场可获得最大利润?最大利润是多少?商场可获得最大利润?最大利润是多少?能力拓展 2.(09中考)某超市经销一种销售成本为每件40元的商品据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度新能源项目开发合同项目投资估算与风险评估
- 2024年度版权许可使用合同标的:音乐作品版权3篇
- 泡茶课件教学课件
- 物流信息技术与应用 课件 9.项目九 数据交换与共享技术 下
- 《餐饮单位索证索票》课件
- 2024年度租赁合同租金调整及违约金规定3篇
- 2024年度教育培训与人才输出服务合同2篇
- 《s教学课件选区》课件
- 《公务员保险与福利》课件
- 体位摆放课件
- 《全国人民代表大会制度课件》
- 船舶触碰桥梁应急预案
- 消防应急安全演练预案模板
- 江苏省盐城市盐都区实验初中2023-2024学年九年级上学期12月月考数学试题
- 电子信息专业毕业论文
- 第五、六单元语文月考测试卷(试题)-统编版语文三年级上册
- 中国透析患者慢性心力衰竭管理指南
- 少先队大队委竞选试卷
- 家长会课件:九年级学生家长会课件
- 家长会课件:初二上期家长会课件
- 《婚姻法》实施情况的调查报告 法学专业
评论
0/150
提交评论