版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Spatial Poisson ProcessesThe Spatial Poisson ProcessConsider a spatial configuration of points in the plane:Notation: Let S be a subset of R2. (R, R2, R3,) Let A be the family of subsets of S. For let |A| denote the size of A. (length, area, volume,) , AA Let N(A) = the number of points in the set A
2、.(Assume S is normalized to have volume 1.)Then is a homogeneous Poisson point process with intensity if: For every finite collection A1, A2, , An of disjoint subsets of S, N(A1), N(A2), , N(A3) are independent.A AN(A)0 For each , AA .|)A|Poisson( N(A) Alternatively, a spatial Poisson process satisf
3、ies the following axioms:i.If A1, A2, , An are disjoint regions, then N(A1), N(A2), , N(An) are independent rvs and N(A1 U A2 U U An) = N(A1) + N(A2) + + N(An)ii. The probability distribution of N(A) depends on the set A only through its size |A|. iii. There exists a such that 0|)Ao(| |A| 1)P(N(A)iv
4、. There is probability zero of points overlapping: 1 1)P(N(A)1)P(N(A) lim0|A|If these axioms are satisfied, we have: for k=0,1,2, k!|)A|(e k)P(N(A)k|A|-Consider a subset A of S: There are 3 points in A how are they distributed in A? A Expect a uniform distribution In fact, for any , we haveProof: AB
5、 |A|B 1)N(A) | 1P(N(B)1)P(N(A1)N(A) 1,P(N(B) 1)N(A) | 1P(N(B)1)P(N(A1)BN(A 1,P(N(B) C|A|-|BA|-|B|-e|A|e e |B C|A|B So, we know that, for k=0,1,n:k-nk|A|B-1|A|B kn n)N(A) | kP(N(B)ie: N(B)|N(A)=n bin(n,|B|/|A|)Generalization:For a partition A1, A2, , Am of A: n)N(A) | n)N(A , . ,n)N(A ,n)P(N(Amm2211m
6、21nmn2n1m21|A|A| |A|A| |A|A| !n!n !nn! for n1+n2+nm = n.(Multinomial distribution)Simulating a spatial Poisson pattern with intensity over a rectangular region S=a,bxc,d. simulate a Poisson( ) number of points1N1i-ie U(perhaps by finding the smallest number N such that) scatter that number of points
7、 uniformly over S(for each point, draw U1, U2, indep unif(0,1)s and place it at (b-a)U1+a),(d-c)U2+c)Consider a two-dimensional Poisson process of particles in the plane with intensity parameter .Lets determine the (random) distance D between a particle and its nearest neighbor.For x0,x)P(D (x)FDx)P
8、(D - 1 centered disk in particlesother P(no - 1 )x area withparticle the at22x-e - 1 So,for x0.2x-DDe x 2 (x)Fdxd (x)fIn 3-D we could show that:3x-De -1 (x)F343x-2DDe x 4 (x)Fdxd (x)f34Example: Spatial Patterns in Statistical EcologyConsider a wide expanse of open ground of a uniform character (such
9、 as the muddy bed of a recently drained lake).The number of wind-dispersed seeds occurring in any particular “quadrat” on this surface is well modeled by a Poisson random variable.The reason this tends to be true is due to the binomial approximation to the Poisson distribution which will hold if the
10、re are many seeds with an extremely small chance of falling into the quadrat.Suppose now that the probability that a seed germinates is p and that they are not sufficiently packed together to interact at this stage.Question: What is the distribution of the number of germinated seeds?Answer: This is
11、a thinned Poisson process.pwith rate(accept probability is )pSo, the surviving seeds continue to be distributed “at random”.Simulation Problem: Type 1 and type 2 seeds will germinate with probabilities p1 and p2, respectively. Type 1 plants will produce K offshoot plants on runners randomly spaced a
12、round the plant where Kgeom(p). (P(K=0)=p) Two types of seeds are randomly dispersed on a one-acre field according to two independent Poisson processes with intensities. and 21 Suppose that the one-acre field is evenly divided into 10 x10 quadrats. Assume that the number of offshoot plants that fall
13、 into a quadrat different from their parent plants is negligible. A particular insect population can only be supported if at least 75% of the quadrats contain at least 35 plants.21 and Using p=0.9, p1=0.7, and p2=0.8, explore the values of that will give the insect population a 95% chance of survivi
14、ng. Use the hugely simplifying assumption that there is no time component to this process (and, in particular, that offshoot plants do not have further offshoots) Keep in mind that we dont really have to keep track of where the individual plants are, only the number in each quadrat. pii Note that we
15、 dont have to consider germination of the plants as a second step after the arrival of the seeds instead consider a thinned Poisson number of plants of Type i with rate Tips on simulating this: Rather than drawing uniformly distributed locations for the seeds, we can simulate the numbers for each quadrat separately (and ignore locations) using the fact that each quadrat will contain Poisson( ) germinating seeds./100pii It would be nice if we could further modify the Poiss
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《Unity引擎》-第14章教学材料
- 全国注册会计师面试考核及答案
- 2026年电气工程在医疗健康领域的应用
- 2026年桥梁美学与人类活动空间
- 2026年建筑施工智慧化的前沿技术
- 创业团队合伙协议范本及注意事项
- 幼儿园中班年终总结及工作反思
- 企业文化构建与员工激励机制设计
- 护理服务流程设计与优化方案
- 课件理论知识
- 小学音乐教师年度述职报告范本
- 国家开放大学电大本科《流通概论》复习题库
- 机关档案汇编制度
- 2025年下半年四川成都温江兴蓉西城市运营集团有限公司第二次招聘人力资源部副部长等岗位5人参考考试题库及答案解析
- 2026福建厦门市校园招聘中小学幼儿园中职学校教师346人笔试参考题库及答案解析
- 2025年高职物流管理(物流仓储管理实务)试题及答案
- 设备管理体系要求2023
- 2025年学法减分试题及答案
- 2025年特种作业人员考试题库及答案
- GB/T 1048-2019管道元件公称压力的定义和选用
- 文化创意产品设计及案例PPT完整全套教学课件
评论
0/150
提交评论