软件JCCAD筏板基础设计步骤举例_第1页
软件JCCAD筏板基础设计步骤举例_第2页
软件JCCAD筏板基础设计步骤举例_第3页
软件JCCAD筏板基础设计步骤举例_第4页
软件JCCAD筏板基础设计步骤举例_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PKPM软件JCCAD筏板基础设计步骤举例一、地质资料输入PKPM软件的JCCAD部分进行基础设计时,不一定要输入地质资料。 对于无桩的基础,如果不进行沉降计算,则可以不输入地质资料;如果要进行沉降计算,则需要输入地质资料。输入土的力学指标包括:压缩模量、重度。对于有桩基础,如果不进行单桩刚度及沉降计算的话,可以不输入地质资料;否则就要输入。输入土的力学指标包括:压缩模量、重度、状态参数、内摩擦角和粘聚力。在PKPM软件主界面“结构”页中选择“JCCAD”软件的第一项“地质资料输入”,程序进入地质资料输入环境,如下图所示:1、土层布置给地质资料命名之后,开始进行土层布置,点击右侧菜单“土层布置

2、”,如下图所示:弹出土层参数对话框,显示用于生成各勘测孔柱状图的地基土分层数据,如下图所示:2、输入孔点 单击“孔点输入”“输入孔位”,以相对坐标和米为单位,逐一输入所有勘测孔点的相对位置。孔点输入结束后,程序自动用互不重叠的三角形网格将各个孔点连接起来,并用插值法将孔点之间和孔点外部的场地土情况计算出来。如下图所示:程序要求孔点形成的三角形网格互不交叉,互不重叠。如孔点位置十分复杂,程序自动形成的网格不能满足上述要求,可以通过“网格修改”命令由人工修改完成。点击“修改参数”,点取已输入的孔点,弹出孔点土层参数对话框,如下图所示。对话框中显示的是标准孔点的土参数,应按各勘测孔的情况修改表中的数

3、据,如土层低标高、土层参数、孔口标高、探孔水头标高等。孔口位置一般不采用绝对坐标,不必修改孔口坐标。如某一列各勘测孔的土参数相同,可以选择“用于所有点”,以减少修改土层参数的工作量。“复制”用于复制参数相同的孔点,“删除孔位”用于删除多余或输入错误的孔点。3、程序除完成地质资料输入外,还可以在此基础上生成孔点土层柱状图、孔点剖面图、土层剖面图、土层和水头的等高线图及孔点平面图等,还可以进行承载力和沉降计算。二、基础参数设置 在PKPM主界面选择“JCCAD”的第二项“基础人机互输入”,程序进入基础交互输入环境。屏幕显示上部结构与基础相连的各层轴网及其柱墙支撑布置,并弹出右图所示的“存在基础模型

4、数据文件”的对话框。选择“读取旧数据文件”项,则程序将原有的基础数据和上部结构数据都读出。如下图所示: 1、本菜单运行的前提条件:上部结构的计算可以提供荷载和凝聚到基础顶面的刚度;有完整准确地地质报告输入,并成功读入到合适位置;如果要读取上部结构分析传来的荷载还应该运行相应的程序的内力计算部分;如果要自动生成基础插筋数据还应运行画柱施工图程序。2、“地质资料”“打开资料”“平移对位”,如下图所示: 3、“参数输入”“基本参数”,第一页:地基承载力计算参数,本页对话框的参数是用于确定地基承载力的。第二页:基础设计参数,本页对话框用于基础设计的公共参数。如下图所示: 4、个别参数,此菜单功能用于对

5、“基本参数”统一设置的基础参数个别修改,这样不同的区域可以用不同的参数进行基础设计。如下图所示:5、参数输出点击菜单,弹出如下图所示的“基础基本参数.txt”文件,用户可查看相关参数,并可将此文本文件打印输出。文件所列的参数为总体参数,当个别节点的参数与总体参数不一致时应以相应计算结果文件中所列参数为准。6、网格节点本菜单功能用于增加、编辑PMCAD传下的平面网格、轴线和节点,以满足基础布置的需要。如设置弹性地基梁的挑梁设置筏板加厚区域等。需注意该菜单调用应在“荷载输入”和“基础布置”之前,否则荷载或基础构件可能会错位。7、荷载输入 (1)、荷载参数本菜单用于输入荷载分项系数、组合系数等参数。

6、点击后,弹出下图所示的“输入荷载组合参数”对话框,内含其隐含值。这些参数的隐含值按规范的相应内容确定。白色输入框的值是用户必须根据工程的用途进行修改的参数,灰色的数值是规范指定值。其中:当“分配无柱间节点荷载”选择项打“”后,程序可将墙间无柱间节点或无基础柱上的荷载分配到节点周围的墙上,从而使墙下基础不会产生丢荷载情况。分配荷载的原则为按周围墙的长度加权分配,长墙分配的荷载多,短墙分配的荷载少。(2)、“附加荷载”“读取荷载”本菜单用于选择上部荷载的荷载来源种类,程序可读取PM导荷和砖混荷载,TAT,PK,SATWE,PMSAP等多种来源上部结构分析程序传来的与基础相连的柱、墙、支撑内力、作为

7、基础设计的外荷载,界面如下图。若要选用某上部结构设计程序生成的荷载工况,则点击左面相应项。选取之后,右面的列表框中相应荷载项前显示,表示荷载选中。程序读取相应程序生成的荷载工况的标准内力当做基础设计的荷载标准值,并自动按照相关规范的要求进行荷载组合。(3)、当前组合 用户选择某种荷载组合,用于在图形去显示该组合的荷载图,便于用户查询或打印。前面带*的荷载组合是当前组合。如下图所示: 光标选择某组荷载组合,点击“确认”钮,该组荷载组合称为当前组合,屏幕显示该组荷载组合图并在下面提示区显示该组荷载的总值以方便荷载校核,如下图所示:(4)、目标组合本菜单用于显示具备某些特征的荷载图,如标准组合下的最

8、大轴力,最大偏心距等。目标组合仅供用户校核荷载之用,与地基基础设计最终选用的荷载组合无关。点击后,菜单显示如下图:荷载组合类型有标准组合、基本组合和准永久组合。特征组合有最大轴力Nmax、最小轴力、最大偏心距、最大X向弯矩、最大Y向弯矩、最大负X向弯矩、最大负Y向弯矩。用光标选择某类荷载组合及某种最不利组合,点击“确定”钮,屏幕显示具备选定特征的荷载组合图。三、布置筏板基础1、单击“筏板”菜单后,弹出如下图所示的界面: 2、点取围区生成,以围区方式指定需要生成筏板的区域(必须由封闭多边形网格组成),即可以自动生成筏板基础。3、修改板边用于修改筏板的每个边的挑出轴线距离,使成为各边有不同的挑出宽

9、度的筏板。4、删除筏板在平面图上选取已经布置的筏板,则删除筏板。5、筏板荷载用于输入筏板上及挑出部位的荷载,用光标选取某块筏板,弹出下图所示“输入筏板荷载”对话框。输入筏板荷载,如果是平板式基础,可以直接布置板带,程序自动确定板带翼缘宽度形成地基梁模型。也可以不布置板带,直接定义地基梁形成梁元模型。因为板及梁肋自重由程序自动计算加入,所以覆土重指板上土重,不包括板及梁肋自重。覆土上恒荷载应包括地面做法或者地面架空板重量。6、冲切计算程序可自动完成柱下筏板对板的冲切计算,以及对指定桩对筏板的冲切计算。其中:L表示最不利组合的代码,R/L表示冲切安全系数(其中R表示筏板受冲切时最大抗力,L表示各荷

10、载组合作用下的最大效应)。R/S大于等于1.0为满足冲切要求,否则小于1.0为不满足冲切要求且显示红色。7、清理屏幕点击后,则清除了在平面图上的显示的验算数值,可以重新计算。8、上部构件布置本菜单用于输入基础上的一些附加构件,以便程序自动生成相关基础或绘制相应施工图之用。菜单内容如下图所示:在进行筏板的冲切验算的时候,如果板厚不满足冲切要求,要增加柱墩。柱墩布置本菜单用于输入平板基础的板上柱墩,如下图所示。 点击后,屏幕显示下图所示的菜单:用户可以用“新建”、“修改”钮来定义和修改柱墩类型。点击后,屏幕上出现“柱墩尺寸”对话框。输入长宽高和端高尺寸后,点“确认”生成或修改一种柱墩类型。其中,高

11、及端高均指突出筏板部分的高度。可用“删除”钮删除已有的某类柱墩。当要布置板上柱墩时,可选取相关柱,布置板上柱墩。柱墩删除,点击后,在平面图上选取柱墩,则删除柱墩。9、板带本菜单用于设置板带,是柱下平板基础按弹性地基梁元法计算时必须运行的菜单。点击后,屏幕右边显示如图所示菜单:通过板带布置菜单,无需定义参数,就可以在网格线上布置板带;通过板带删除,可将已布置的板带删除。若采用桩筏筏板有限元计算平板,且按“梁板(板带)方式”进行交互配筋设计及绘制板筋施工图时,则应设置板带,建模时应遵照升板规范有关规定,如一般柱网应正交,柱网间距相差不宜太大。板带布置位置不同可导致配筋的差异。布置原则是将板带视为暗

12、梁,沿柱网轴线布置,但在抽柱位置不应布置板带,以免将柱下板带布置到跨中。10、重心校核本菜单用于筏板基础、桩基础的荷载重心。基础形心位置校核以及基底反力、地基承载力校核。点击菜单后,屏幕显示菜单,如下图所示:(1)、选荷载组:用于在所有荷载组合中选取一组进行重心校核。点击后,弹出下面所示“选择荷载组合类型”对话框。点取后确认即可。(2)、筏板重心、桩重心 选定某组荷载组合后,进行筏板重心校核。点击后,屏幕上各块筏板分别显示作用于该板上的总竖向荷载作用点坐标(重心)、板底平均反力、筏板形心坐标、板底最大、最小反力位置和值以及偏心距比值,下图为某荷载组合下筏板重心校核结果图。四、图形管理本菜单是“

13、基础人机交互输入”菜单中有关图形和绘制的管理工具,包括各类基础视图选项、图形缩放、三维实体显示、绘制等内容。(1)、显示内容 本菜单用于设置各类基础视图选项等信息,从而控制显示的内容,即可将当前显示的一些图层开闭。点击菜单后,弹出下图所示的“基础输入显示开关”对话框。用户需要显示某类基础,则选这类基础的复选框。如要显示独基,则选“独基”复合框即可。(2)、写图文件 本菜单用于将基础设计用的节点、网格编号图、各组荷载组合图存图,并可将当前图形转存。点击菜单后,弹出下图所示的“选择输出文件及图名”对话框。(3)、OPGL方式 本菜单用于用OpenGL技术显示基础实体模型,并可进行多种漫游,下图显示

14、的是基础实体模型:五、结束退出本菜单用于结束基础的输入,退出“基础人机交互输入”菜单。点击菜单后,程序将根据用户基础设计的内容,进行必要的检查,显示相应的提示信息。各组荷载地基承载力验算图其中显示为总竖向荷载作用点,基础形心,板的平均、最大、最小反力(含基础自重),基础承载力荷载为紫色,形心为青色,反力为红色,承载力为绿色。六、基础梁板弹性地基梁法计算本菜单是采用弹性地基梁元法进行基础结构计算的菜单,它由4个从属分菜单组成。1、弹性地基板整体沉降本菜单可用于按弹性地基梁元法输入的筏板(带肋梁或板带)基础、梁式基础。独立基础、条形基础的沉降。桩筏基础和无板带的平板基础则不能应用此菜单。如不进行沉

15、降计算可不运行此菜单,如采用广义文克尔法计算梁板式基础则必须运行此菜单,并按刚性底板假定方法计算。2、一般区格短向不少于5个,长向不少于7个,或长、宽约为20003000mm,总之区格总数不能超过1000个,并尽量使区格与筏板边界对齐,一般区格的大小要反复调整几次才能达到较理想的状态。接着屏幕显示地址资料勘探孔与建筑物相对位置,用户检查没有问题后点击鼠标右键或任意其他键退出本图形。屏幕接着出现“沉降计算参数输入”表3、沉降计算参数输入:沉降计算地基模型系数:一般0.10.4。软土取小值,硬土取大值,它控制边角部反力与中央反力的比之:对于矩形板一般四世纪粘土应控制在1.31.7左右,软土控制在1

16、.22左右。砂土控制在1.82.2左右;对于异形板粘土控制在1.92.2左右,砂土控制在1.82.6左右;一般正方形、圆形取大值,细长条形取小值。这里有个非常重要的概念,就是地基模型的选用。程序用模型参数kij(默认为0.2)来模拟不同的地基模型,kij=0的时候,为经典文克尔地基模型,kij=1的时候,为弹性半空间模型。沉降计算经验系数:0,由程序自动计算。在进行上海地区工程的设计时,要特别注意进行校核。上海市工程建设规范地基基础设计规范DGJ08111999 条文说明、实测沉降资料发现,在一些浅层粉性土地区,采用条文规定的沉降计算经验系数,可能导致计算沉降偏大;而对于第三层淤泥质粉质粘土缺

17、失或很薄,而第四层淤泥质粘土层很厚(大于10m)且含水量很高(大于50)的情况,采用条文规定的沉降计算经验系数所得到的计算沉降量又可能小于实测值。地基承载力标准值、基底至天然地面的平均土容重、地下水深度:根据实际情况填写。沉降计算压缩层深度:程序自动给出。如果用户要采用人工确定的压缩层深度计算独立基础和墙下条形基础的压缩层深度,只需在该值前加负号。该值前的正负号对板式基础和梁式基础的压缩层深度无影响。在进行上海地区工程的设计时,要特别注意进行校核。回弹再压缩模量/压缩模量(加权平均):应对于多层建筑为0,即不考虑。回弹再压缩沉降计算经验系数:1.0梁式基础、条基、独基沉降计算压缩层深度自动确定

18、:使用规范:国家规范、上海规范基础刚柔性假定:刚性假定、完全柔性假定对于含有基础梁的结构基础在应选择“完全柔性假定”,否则梁反力异常。如采用广义文克尔法计算梁板式基础则必须运行此菜单,并按刚性底板假定方法计算。完全柔性假定是根据建筑地基基础设计规范GB500072002中或者上海地基规范,即常用的规范手算法,它可用于独立基础、条形基础和筏板基础的沉降计算。刚性假定中地基模型系数是考虑土的应力、应变扩散能力后的折减系数。 修改完参数后,屏幕提示用户将计算结果存在“CJJS.OUT”文件中,如用户想改为其他名称可在屏幕上输入。如下图所示:开始计算,如下图所示:计算完成后屏幕用图形方式显示计算出的各

19、块筏板基础各区格的沉降值设计反力,并在屏幕左上角用汉字显示各块板的平均沉降值(即形心处沉降),X向Y向倾角,平均附加反力值。点取“数据文件”菜单可查询计算结果数据文件。弹性地基基床反力系数(K值)的意义是,在单位面积上引起单位位移所需施加的外力。K值应取与基础接触处的土参数,土越硬取值越大,埋置越深取值越大,考虑垫层影响取值较大。七、桩筏筏板有限元计算1、“基础梁板弹性地基梁法计算”,简称“梁元法”,其主要适用于弹性地基梁基础的计算分析,和以梁作用为主的较薄梁筏板基础计算(按T形梁计算,板作为梁的翼缘考虑),也可以计算划分了板带的柱下平筏板基础和布置了暗梁的墙下平筏板基础,还可以进行条形基础和

20、独立基础的沉降计算。2、对于不是初次执行这一菜单的工程,首先需要进行如下的选择:如果选择了“第一次网格划分”,则所有已经存在的网格划分结果以及相关参数均被取消。3、板元法可以考虑桩顶与筏板刚接、半刚接、铰接等连接情况;可以考虑基础与土的共同作用,即板下土的承载力分担影响;可以考虑上部结构对基础刚度的贡献,程序提供了四种基础计算模型,如下图所示:模型参数:模型参数的内容包括计算模式及计算参数,点取此菜单后弹出“计算参数”对话框:4、网格划分自动划分5、单元形成筏板定义筏板布置,如下图所示:6、荷载选择SATWE荷载,如下图:7、沉降试算 沉降试算的目的是对给定的参数进行合理性校核,其主要指标是基

21、础的沉降值,对于桩筏基础同时给出建筑桩基技术规范及上海地基基础规范的沉降计算值。对于筏基基础同时给出建筑地基基础设计规范及上海地基基础规范的沉降计算值。8、计算,一般不需要人工干预。结果显示根据需要打开相关图形或数据文件。交互配筋八、筏板基础配筋施工图1、点击“设计参数”,如下图所示:2、网线编辑绘制轴线自动标注3、布板上筋自动配筋:4、布板下筋自动配筋:5、画施工图画钢筋图:6、钢筋文本:7、画钢筋表:8、画剖面图:9、图框-存图永磁交流伺服电机位置反馈传感器检测相位与电机磁极相位的对齐方式2008-11-07来源:internet浏览:504 主流的伺服电机位置反馈元件包括增量式编码器,绝

22、对式编码器,正余弦编码器,旋转变压器等。为支持永磁交流伺服驱动的矢量控制,这些位置反馈元件就必须能够为伺服驱动器提供永磁交流伺服电机的永磁体磁极相位,或曰电机电角度信息,为此当位置反馈元件与电机完成定位安装时,就有必要调整好位置反馈元件的角度检测相位与电机电角度相位之间的相互关系,这种调整可以称作电角度相位初始化,也可以称作编码器零位调整或对齐。下面列出了采用增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等位置反馈元件的永磁交流伺服电机的传感器检测相位与电机电角度相位的对齐方式。 增量式编码器的相位对齐方式  在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带

23、换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下:  1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;  2.用示波器观察编码器的U相信号和Z信号;  3.调整编码器转轴与电机轴的相对位置;  4.一边调整,

24、一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系;  5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。  撤掉直流电源后,验证如下:  1.用示波器观察编码器的U相信号和电机的UV线反电势波形;  2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。  上述验证方法,也可以用作对齐方法。  需要注意的是,此时增量式编码器的U相信号的相位零

25、点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。  有些伺服企业习惯于将编码器的U相信号零点与电机电角度的零点直接对齐,为达到此目的,可以:  1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线;  2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形;

26、 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置;  4.一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。  由于普通增量式编码器不具备UVW相位信息,而Z信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而不作为本讨论的话题。  绝对式编码器的相位对齐方式  绝对式编码器的相位对齐对于单圈和多圈而言,差别不大,其实都是在一圈内对齐编码器的检测相位与电机电角度的相位。早期的绝对式编码器会以单独

27、的引脚给出单圈相位的最高位的电平,利用此电平的0和1的翻转,也可以实现编码器和电机的相位对齐,方法如下:  1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;  2.用示波器观察绝对编码器的最高计数位电平信号;  3.调整编码器转轴与电机轴的相对位置;  4.一边调整,一边观察最高计数位信号的跳变沿,直到跳变沿准确出现在电机轴的定向平衡位置处,锁定编码器与电机的相对位置关系;  5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,跳变沿都能准确复现,则对齐有效。  这类绝对式

28、编码器目前已经被采用EnDAT,BiSS,Hyperface等串行协议,以及日系专用串行协议的新型绝对式编码器广泛取代,因而最高位信号就不符存在了,此时对齐编码器和电机相位的方法也有所变化,其中一种非常实用的方法是利用编码器内部的EEPROM,存储编码器随机安装在电机轴上后实测的相位,具体方法如下:  1.将编码器随机安装在电机上,即固结编码器转轴与电机轴,以及编码器外壳与电机外壳;  2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;  3.用伺服驱动器读取绝对编码器的单圈位置值,并存入编码器内部记录电机电角度初

29、始相位的EEPROM中;  4.对齐过程结束。  由于此时电机轴已定向于电角度相位的-30度方向,因此存入的编码器内部EEPROM中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻的单圈位置检测数据与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。 这种对齐方式需要编码器和伺服驱动器的支持和配合方能实现,日系伺服的编码器相位之所以不便于最终用户直接调整的根本原因就在于不肯向用户提供这种对齐方式的功能界面和操作方法。这种对齐方法的一大好处是,只需向电机绕组提供确定相序和方向的转子定向电流,无需调整编

30、码器和电机轴之间的角度关系,因而编码器可以以任意初始角度直接安装在电机上,且无需精细,甚至简单的调整过程,操作简单,工艺性好。  如果绝对式编码器既没有可供使用的EEPROM,又没有可供检测的最高计数位引脚,则对齐方法会相对复杂。如果驱动器支持单圈绝对位置信息的读出和显示,则可以考虑:  1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;  2.利用伺服驱动器读取并显示绝对编码器的单圈位置值;  3.调整编码器转轴与电机轴的相对位置;  4.经过上述调整,使显示的单圈绝对位置值充分接近根据电机的

31、极对数折算出来的电机-30度电角度所应对应的单圈绝对位置点,锁定编码器与电机的相对位置关系;  5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算位置点都能准确复现,则对齐有效。  如果用户连绝对值信息都无法获得,那么就只能借助原厂的专用工装,一边检测绝对位置检测值,一边检测电机电角度相位,利用工装,调整编码器和电机的相对角位置关系,将编码器相位与电机电角度相位相互对齐,然后再锁定。这样一来,用户就更加无从自行解决编码器的相位对齐问题了。  个人推荐采用在EEPROM中存储初始安装位置的方法,简单,实用,适应性好,便于向用户开放,以便用户自行安

32、装编码器,并完成电机电角度的相位整定。  正余弦编码器的相位对齐方式  普通的正余弦编码器具备一对正交的sin,cos 1Vp-p信号,相当于方波信号的增量式编码器的AB正交信号,每圈会重复许许多多个信号周期,比如2048等;以及一个窄幅的对称三角波Index信号,相当于增量式编码器的Z信号,一圈一般出现一个;这种正余弦编码器实质上也是一种增量式编码器。另一种正余弦编码器除了具备上述正交的sin、cos信号外,还具备一对一圈只出现一个信号周期的相互正交的1Vp-p的正弦型C、D信号,如果以C信号为sin,则D信号为cos,通过sin、cos信号的高倍率细分技术,不仅可以使正

33、余弦编码器获得比原始信号周期更为细密的名义检测分辨率,比如2048线的正余弦编码器经2048细分后,就可以达到每转400多万线的名义检测分辨率,当前很多欧美伺服厂家都提供这类高分辨率的伺服系统,而国内厂家尚不多见;此外带C、D信号的正余弦编码器的C、D信号经过细分后,还可以提供较高的每转绝对位置信息,比如每转2048个绝对位置,因此带C、D信号的正余弦编码器可以视作一种模拟式的单圈绝对编码器。  采用这种编码器的伺服电机的初始电角度相位对齐方式如下:  1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;  2.用示

34、波器观察正余弦编码器的C信号波形;  3.调整编码器转轴与电机轴的相对位置;  4.一边调整,一边观察C信号波形,直到由低到高的过零点准确出现在电机轴的定向平衡位置处,锁定编码器与电机的相对位置关系;  5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,过零点都能准确复现,则对齐有效。  撤掉直流电源后,验证如下:  1.用示波器观察编码器的C相信号和电机的UV线反电势波形;  2.转动电机轴,编码器的C相信号由低到高的过零点与电机的UV线反电势波形由低到高的过零点重合。  这种验证方法,也可以用作对齐方法。 &

35、#160;此时C信号的过零点与电机电角度相位的-30度点对齐。 如果想直接和电机电角度的0度点对齐,可以考虑:  1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线;  2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形;  3.调整编码器转轴与电机轴的相对位置;  4.一边调整,一边观察编码器的C相信号由低到高的过零点和电机U相反电势波形由低到高的过零点,最终使2个过零点重合,锁定编码器与电机的相对位置关系,完成对齐。  由于普通正余弦编码器不具备一圈之内的相位信

36、息,而Index信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而在此也不作为讨论的话题。  如果可接入正余弦编码器的伺服驱动器能够为用户提供从C、D中获取的单圈绝对位置信息,则可以考虑:  1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;  2.利用伺服驱动器读取并显示从C、D信号中获取的单圈绝对位置信息;  3.调整旋变轴与电机轴的相对位置;  4.经过上述调整,使显示的绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的绝对位置点,锁定编码器与电机的相对位

37、置关系;  5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算绝对位置点都能准确复现,则对齐有效。  此后可以在撤掉直流电源后,得到与前面基本相同的对齐验证效果:  1.用示波器观察正余弦编码器的C相信号和电机的UV线反电势波形;  2.转动电机轴,验证编码器的C相信号由低到高的过零点与电机的UV线反电势波形由低到高的过零点重合。  如果利用驱动器内部的EEPROM等非易失性存储器,也可以存储正余弦编码器随机安装在电机轴上后实测的相位,具体方法如下:  1.将正余弦随机安装在电机上,即固结编码器转轴与电机轴,以及编

38、码器外壳与电机外壳;  2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;  3.用伺服驱动器读取由C、D信号解析出来的单圈绝对位置值,并存入驱动器内部记录电机电角度初始安装相位的EEPROM等非易失性存储器中;  4.对齐过程结束。  由于此时电机轴已定向于电角度相位的-30度方向,因此存入的驱动器内部EEPROM等非易失性存储器中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻由编码器解析出来的与电角度相关的单圈绝对位置值与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30

39、度,就可以得到该时刻的电机电角度相位。  这种对齐方式需要伺服驱动器的在国内和操作上予以支持和配合方能实现,而且由于记录电机电角度初始相位的EEPROM等非易失性存储器位于伺服驱动器中,因此一旦对齐后,电机就和驱动器事实上绑定了,如果需要更换电机、正余弦编码器、或者驱动器,都需要重新进行初始安装相位的对齐操作,并重新绑定电机和驱动器的配套关系。  旋转变压器的相位对齐方式  旋转变压器简称旋变,是由经过特殊电磁设计的高性能硅钢叠片和漆包线构成的,相比于采用光电技术的编码器而言,具有耐热,耐振。耐冲击,耐油污,甚至耐腐蚀等恶劣工作环境的适应能力,因而为武器系统等工况

40、恶劣的应用广泛采用,一对极(单速)的旋变可以视作一种单圈绝对式反馈系统,应用也最为广泛,因而在此仅以单速旋变为讨论对象,多速旋变与伺服电机配套,个人认为其极对数最好采用电机极对数的约数,一便于电机度的对应和极对数分解。  旋变的信号引线一般为6根,分为3组,分别对应一个激励线圈,和2个正交的感应线圈,激励线圈接受输入的正弦型激励信号,感应线圈依据旋变转定子的相互角位置关系,感应出来具有SIN和COS包络的检测信号。旋变SIN和COS输出信号是根据转定子之间的角度对激励正弦信号的调制结果,如果激励信号是sint,转定子之间的角度为,则SIN信号为sint×sin,则COS信号

41、为sint×cos,根据SIN,COS信号和原始的激励信号,通过必要的检测电路,就可以获得较高分辨率的位置检测结果,目前商用旋变系统的检测分辨率可以达到每圈2的12次方,即4096,而科学研究和航空航天系统甚至可以达到2的20次方以上,不过体积和成本也都非常可观。  商用旋变与伺服电机电角度相位的对齐方法如下:  1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出;  2.然后用示波器观察旋变的SIN线圈的信号引线输出;  3.依据操作的方便程度,调整电机轴上的旋变转子与电机轴的相对位置,或者旋变定子与电机外壳的相对位置;

42、 4.一边调整,一边观察旋变SIN信号的包络,一直调整到信号包络的幅值完全归零,锁定旋变;  5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,信号包络的幅值过零点都能准确复现,则对齐有效 。  撤掉直流电源,进行对齐验证:  1.用示波器观察旋变的SIN信号和电机的UV线反电势波形;  2.转动电机轴,验证旋变的SIN信号包络过零点与电机的UV线反电势波形由低到高的过零点重合。  这个验证方法,也可以用作对齐方法。  此时SIN信号包络的过零点与电机电角度相位的-30度点对齐。 如果想直接和电机电角度

43、的0度点对齐,可以考虑:  1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线;  2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形;  3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置;  4.一边调整,一边观察旋变的SIN信号包络的过零点和电机U相反电势波形由低到高的过零点,最终使这2个过零点重合,锁定编码器与电机的相对位置关系,完成对齐。  需要指出的是,在上述操作中需有效区分旋变的SIN包络信号中的正半周和负半周。由于SI

44、N信号是以转定子之间的角度为的sin值对激励信号的调制结果,因而与sin的正半周对应的SIN信号包络中,被调制的激励信号与原始激励信号同相,而与sin的负半周对应的SIN信号包络中,被调制的激励信号与原始激励信号反相,据此可以区别和判断旋变输出的SIN包络信号波形中的正半周和负半周。对齐时,需要取sin由负半周向正半周过渡点对应的SIN包络信号的过零点,如果取反了,或者未加准确判断的话,对齐后的电角度有可能错位180度,从而造成速度外环进入正反馈。 如果可接入旋变的伺服驱动器能够为用户提供从旋变信号中获取的与电机电角度相关的绝对位置信息,则可以考虑:  1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;  2.利用伺服驱动器读取并显示从旋变信号中获取的与电机电角度相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论