下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、23.2.3关于原点对称的点的坐标【知识与技能】1.理解点P与P关于原点对称时,它们的横、纵坐标的关系;2.能运用关于原点对称的点的坐标的关系解决具体问题.【过程与方法】通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、动手能力、观察能力以及与他人合作交流的能力.【情感态度】结合坐标系内点的坐标对称关系的学习,培养学生合作交流的意识和归纳类比的能力,增强数学学习的信心和乐趣.【教学重点】关于原点对称的点的坐标关系及其应用.【教学难点】运用中心对称的知识导出关于原点对称的点的坐标性质.一、情境导入,初步认识问题1以前我们学习过关于x轴、y轴对称的点的坐标问题,你能说说关于x轴、y轴对称的
2、点的坐标的关系吗?问题2在平面直角坐标系中,点A的坐标为(-3,2),则点A关于原点O的对称点A的坐标是什么呢?你能说说吗?【教学说明】让学生通过对问题的思考,初步感受关于原点对称的点的坐标的确定方法,激发学习兴趣和求知欲望,导入新知.二、思考探究,获取新知探究 如图,在直角坐标系中,作出下列已知点关于原点O的对称点,并写出它们的坐标.A(4,0) B(0,-3) C(2,1)D(-1,2) E(-4,-3) 思考通过你的作图,你能说出这些点和它们关于原点O的对称点的坐标之间有什么关系吗?【教学说明】通过让学生在平面直角坐标系中画出某点关于原点O的对称点的过程,可让学生初步感受到关于原点对称的
3、点的坐标的特征,学生在自我探索的过程中,体会成功的喜悦和学习的乐趣.如图所示,可得到点A、B、C、D、E关于原点O的对称点分别为A、B、C、D、E.以点C为例,作C点关于原点O的对称点C的方法为:连接CO并延长至C,使CO=CO,则C点即为点C关于原点O的对称点.过C作CMx轴于M,作CNx轴于N.易知OCMOCN.CM=CN,OM=ON.又C(2,1),即OM=2,CM=1,ON=2,CN=1.C点坐标为(-2,-1).同理可知点A、B、D、E关于原点O的对称点A、B、D、E的坐标分别为(-4,0),(0,3),(1,-2),(4,3)【归纳结论】两个点关于原点对称时,它们的横、纵坐标的符号
4、相反,即点P(x,y)关于原点O的对称点P的坐标为(-x,-y).【教学说明】在上面的探索活动过程中,先让学生动手画出一些点关于原点的对称点,并写出它们的坐标,然后让学生观察坐标之间的变化,总结出规律,从而归纳出结论,即本节的重点.在这一活动中,既学到了新知识,又锻炼了学生的数学归纳能力.三、典例精析,掌握新知例1 图,利用关于原点对称的点的坐标的特点,作出与ABC关于原点对称的图形.分析:(1)由图可知,A、B、C三点坐标分别是什么?(2)它们关于原点的对称点的坐标又应分别是什么?(3)这样画出的ABC与前面利用中心对称来作图有什么区别?解:(1)A、B、C三点坐标分别是(-4,1)、(-1
5、,-1)、(-3,2)(2)它们关于原点对称的点的坐标分别是(4,-1)、(1,1)、(3,-2)(3)略例2 如图,平行四边形的中心在坐标原点,ADBC,D(3,2),C(1,-2),求A、B两点的坐标.分析:因为平行四边形是中心对称图形,所以相对的两个顶点关于中心对称,图中该平行四边形的中心为原点,故A与C、B与D关于原点对称,从而可求出A、B坐标.解:平行四边形是中心对称图形,A与C,B与D关于原点对称.A(-1,2),B(-3,-2).【教学说明】教师提出问题来帮助学生理清思路,既是对所学知识的回顾与反思,又为解决问题寻求解题思路,增强学生运用知识的能力.例1的作图过程可由学生自己完成
6、.四、运用新知,深化理解1.点M(-2,3)关于原点的对称点M的坐标为( )A.(-2,-3)B.(2,-3)C.(3,-2)D.(2,3)2.下列各点中哪两个点关于原点O对称?A(-5,0),B(0,2),C(2,-1),D(2,0),E(0,5),F(-2,1),G(-2,-1)【教学说明】设计这两个小题的目的在于进一步使学生掌握知识,可由学生自主完成,教师予以点评.【答案】1.B2.C(2,-1)与F(-2,1)关于原点O对称五、师生互动,课堂小结通过这节课的学习,你有哪些收获和想法?说说看.【教学说明】教师还可让学生及时回顾本节课的知识,通过反思、提炼学习的收获,并通过交流,教师可了解学生的学习情况,并及时调整.1.布置作业:从教材“习题23.2”中选取.2.完成练习册中本课时 练习的“课时 作业”部分.1.本节课通过P(x,y)关于原点的对称点为P(-x,-y)的运用,初步向学生渗透“数形结合”思想.也为以后的函数学习奠定一定的基础.整个教学和知识点的衔接都比较的流畅,但在很多细节的处理不是很到位,尤其是题目的设置,需要再斟酌.充分利用教材,适当的时候可以将教材内容有机的整合起来,选取适当的载体呈现,这样的教学才能达到更好的效果.2.这一节与图形的三种运动(平移、翻折、旋转)之一的“旋转”有着不可分割的联系,通过对这一节的学习,既可以让学生认识图形的三种基
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学温度的测量
- 加班与休假管理规章制度
- 医疗危机处理与应急制度
- 2022年三年级语文下册第二单元主题阅读+答题技巧(含答案、解析)部编版
- 算法设计与分析 课件 10.4-综合应用-资源分配问题
- 2024年达州客运从业资格证到期换证考试
- 2024年上海客运急救考试题及答案
- 2024年银川客运急救知识培训内容
- 2024年阳江客运资格证情景题
- 2024年淄博道路运输客运从业资格证模拟考试
- 素描教案之素描基础
- 2024-2030年中国丝苗米行业发展趋势及发展前景研究报告
- JTJ034-2000 公路路面基层施工技术规范
- 《现代控制理论》课程教学大纲
- 《娱乐场所管理条例》课件
- 特殊儿童心理辅导理论与实务 课件 第4、5章 特殊儿童心理辅导与治疗的基本方法、特殊儿童常见的心理行为问题及辅导
- 北师大版2024-2025学年六年级数学上册典型例题系列第一单元圆概念认识篇【八大考点】(原卷版+解析)
- 餐饮服务模考试题(附答案)
- 大数据 AI大模型-智慧统计大数据平台解决方案(2023版)
- 教科版科学二年级上册全册教案(完整版)
- 如何引导孩子明确自己的兴趣与爱好
评论
0/150
提交评论