每块成功的充电电池背后,都有一群“得寸进尺”的科学家_第1页
每块成功的充电电池背后,都有一群“得寸进尺”的科学家_第2页
每块成功的充电电池背后,都有一群“得寸进尺”的科学家_第3页
每块成功的充电电池背后,都有一群“得寸进尺”的科学家_第4页
每块成功的充电电池背后,都有一群“得寸进尺”的科学家_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、每块成功的充电电池背后,都有一群“得寸进尺”的科学家锂电池修复 锂电池 手机锂离子电池 18650锂电池 锂聚合物电池 聚合物锂离子电池 5号充电电池 充电电池什么牌子好 充电电池哪个牌子好 充电电池寿命 镍氢充电电chenwei 发表于  2015-05-05 17:43 近日,斯坦福大学的戴宏杰研究组在自然发表论文,宣布研发出了充电极快、寿命超长的铝离子电池,引起了广泛关注。比起耳熟能详的“锂电池”,人们对铝离子电池的感觉要陌生得多。为什么要研发这样的新电池?这还得从充电电池的发展说起。初中时,我有一部黄色的随身听。我给它准备了3对充电电池轮番上阵,这样,当周杰伦的声音突然变得缓

2、慢时,我知道总有电池可以更换。后来,我有了MP3和手机,就渐渐不再听随身听了,需要经常充电的,也从圆柱形的5号电池换成了扁扁的锂电池。在我看来,世上无法逃避的事情,除了死亡和交税,还有给电池充电。不是每一节电池都叫可充电电池电池是生活中再常见不过的物品了。它进入人类世界已有200年的历史。早在1800年,意大利科学家亚历山德罗·伏特(Alessandro Volta)就发明了“伏打电堆”。伏打电堆由很多个单元堆叠而成,每个单元都有一块铜板和一块锌板,中间由一块浸有盐水的布隔开。时至今日,生活中常见的碱性电池、铅酸电池、锂电池等电池,都与古老的伏打电堆共享着同样的工作原理:通过氧化还原

3、反应将自己储存的化学能转化为电能。描绘伏特(左)向拿破仑(右)展示伏打电堆的画作。图片来源:这一看似神奇的过程其实并不复杂。一块电池主要由正极、负极和电解液三部分组成。当电池与外电路联通时,负极一端就开始发生氧化反应,释放出电子;正极一端则发生还原反应,正好需要补充电子。由于电解液将两极隔开,只允许离子流动,不允许电子流动,于是电子通过外电路从负极流向正极,形成电流做功,化学能也藉此转化成了电能。原电池示意图。阳极(Anode)与阴极(Cathode)与外电路连接,浸泡在电解液中,电池工作时,电流从阴极流向阳极。因此此处,阳极和负极是同一电极,阴极与正极是同一电极。图片来源:Arumugam

4、Manthiram, Smart Battery MaterialsIn, CRC Press, 2009, pp. 8.但如果用一次性电池为随身听供电,那么一张专辑刚刷几遍,电池就该扔了。一次性电池的电化学反应是不可逆的,也就是说,化学能转化为电能的旅程只能一条路走到黑,电量用尽,电池也没用了。能不能来一种可以重复使用的电池?这种“得寸进尺”的需求,最终促成了世界上最早的可充电电池铅酸电池的诞生。它由法国物理学家加斯顿·普兰特(Gaston Planté)于1859年发明。可充电电池采用的是可逆的电化学反应,只要施加外电压,改变电子流动的方向(从正极流向负极),电池两极就

5、会发生与放电时方向相反的化学反应,仿佛“返老还童”,最终重新充满电力。这项发明影响之深远令人不服不行时至今日,人们在启动汽车引擎时使用的蓄电池依然是铅酸电池。铅酸电池的负极与正极分别采用海绵铅及二氧化铅,电解液使用稀硫酸。它可以提供很大的电流,价钱也不贵,但就是体积太大了些。普兰特和他发明的铅酸电池。图片来源:bb-铅酸电池做不到面面俱到?没关系,后面还有一堆科学家跃跃欲试呢。此后,研究者们又不断探索,发明出采用其他化学反应的充电电池,如镍镉电池、镍氢电池和锂电池。它们能量密度更大,体积更小,可以用于为各类小型电子设备提供电能。青出于蓝的锂离子电池之前说到,电池工作时,电子通过外电路从负极流向

6、正极。与此同时,相同电荷量的正离子则在电池内部从负极向正极流动。早期的电池都使用诸如稀硫酸这样的以水为溶剂的电解液。在这种情况下,电池内肩负维持电荷平衡任务的是氢离子。然而,使用水系电解液的电池,最多能达到的工作电压也不过2伏左右。如果我们想要获得更高的电压,输出更大功率,就要使用不含水的电解液,找到替代氢离子的正离子。查看元素周期表,最佳的候选者落在了锂离子身上:作为3号元素,锂的原子量只有6.9;它既轻又小,比其他大的离子更容易在电解液中移动,可谓不二之选。确定了锂离子,接下来的任务,就是找到可以与之发生可逆反应的电极材料了。到20世纪70年代,美国化学家斯坦利·惠廷厄姆(M.

7、Stanley Whittingham)在埃克森(Exxon)工作时率先发明了锂离子电池。经过多年优化,商业化的可充电锂离子电池在20世纪90年代初在日本推出。斯坦利·惠廷厄姆目前仍是下一代锂电池设计的重要研发者。图片来源:锂离子电池的负极使用石墨,正极使用钴酸锂,电解液则使用含有锂盐(如六氟磷酸锂)的有机溶剂。放电时,嵌入在石墨负极中的锂被氧化进入电解液,跑到正极嵌入到氧化钴的晶格间隙中形成钴酸锂;充电时,锂则从钴酸锂中脱嵌,溜回石墨中,如此循环往复。这样的电池,工作电压可达到3.7伏以上,能量密度大大提高。但所谓金无足赤,尽管锂离子电池大获成功,也免不

8、了还有缺点比如价格较高,容量流失,以及最严重的安全性不高的问题。锂离子电池电解液使用的有机溶剂十分易燃,虽然我们可以通过加入添加剂和改进电池设计来提高电池的稳定性,却终究不是长久之计。厚望加身的铝离子电池原理上,我们只要用另一种X离子来替代锂离子,并找到与之匹配的电极和电解液,就可以得到“X离子电池”。在众多“X”的候选者中,铝算是优势比较明显的:它的价格比锂更低,化学性质也更稳定,而且在反应时,每个铝原子可以释放3个电子,似乎是个不错的选择。然而,研发铝离子电池的道路并不顺利。最大的困难在于找到合适的正极材料和电解液。在以往的研究中,正极材料往往会在充放电过程中发生不可逆的结构破坏,能有效参

9、与反应的部分因而越来越少。最终,电池容量迅速下降,使用寿命只有几十个循环这显然不能满足人们的需求。在研究者们锲而不舍的努力之下,上月,铝离子电池终于迎来了大突破。斯坦福大学化学系的戴宏杰教授在自然发文宣布,他的研究小组成功制造出了超长寿命的铝离子电池。戴宏杰(右)和文章的共同第一作者之一龚明(左)图片来源: Mark Shwartz/Stanford Precourt Institute for Energy这种电池选用铝金属作为负极,正极则是一种三维结构的泡沫石墨。秘制电解液由有机盐 EMImCl(1-ethyl-3-methylimidazolium chloride) 和 AlCl3 按

10、一定比例混合制成的离子液体。负责在电解液中转移电荷的离子是 AlCl4-。电池放电时,铝负极被氧化生成 Al2Cl7-,同时释放电子;本来嵌入在泡沫石墨正极孔隙中的 AlCl4- 则脱嵌进入电解液。充电时,电解液中的 AlCl4- 则重新嵌入到泡沫石墨孔隙当中。因为 AlCl4-离子的体积较大,因此找到一种可以允许它快速嵌入/脱嵌的的正极材料颇为关键。研究人员巧妙地制备了泡沫石墨它内部充满空隙,表面积很大,让AlCl4-离子可以快速自由地进出。以泡沫镍为模板,研究者先用化学气相沉积法在它的表面沉积上石墨,再覆盖上一层聚合物PMMA;接着用相应溶剂将泡沫镍和PMMA相继溶解,得到三维结构的泡沫石

11、墨。用普通非泡沫热解石墨做正极的话,铝离子电池的充放电速率只有使用泡沫石墨时的75分之一。图片来源:参考文献1在经过惊人的7500次充放电循环后,这些铝离子电池的容量几乎没有损失,工作电压也稳定在2伏左右。除了寿命长,这种铝离子电池功率密度也很高(3000W·kg1),可以在一分钟内充满电。此外,它们柔性极好,可以随意弯曲;安全性能也超棒,哪怕用电钻将它钻穿,也不会影响它正常工作。锂离子电池被戳开一个洞很可能带来严重的后果,但用钻头(Drill)钻穿戴宏杰研究组的铝离子电池,电池依然能正常工作。图片来源:取而代之?说了这么多优点,这样的铝离子充电电池什么时候能

12、走进我们的生活?恐怕还早得很。目前,它的工作电压只有锂离子电池的一半,能量密度也只有 40 Wh·kg1,与铅酸电池相当,还不到锂离子电池的三分之一,所以大家应该还没法在智能手机、笔记本电脑或电动汽车里看到它。除了性能的提高还潜力很大之外,这些铝离子电池的生产成本也有待降低它的电解液使用离子液体,价格较高;用于制备泡沫石墨正极的化学气相沉积法也不便宜、是很难投入大规模生产的工艺。要达到“物美价廉”,研究者们还有很长的路要走。但不管怎样,铝离子电池在使用寿命、功率密度和安全性方面的性能依然优越,如果未来可以降低生产成本,它们将会十分适合用于在对能量密度要求不高的地方发挥作用。比如在电网

13、储能系统中,它们能为太阳能和风能等可再生能源储能,还能作为家用大型电池,为电动车充电,或是在停电时为电器供电。一旦科学家能够研发出比泡沫石墨更好的正极材料,进一步提高铝离子电池的工作电压,它的用途将更加广泛。随身听走了,MP3也快走了,科技产品一代又一代地从我们的生活中出现又淘汰,电池和研究电池的人却一直还在。之后还会有怎样的电池惊艳我们的生活?给装备充好电,拭目以待吧。(编辑:Calo)果壳网已经加入自然出版集团媒体分享白名单,点击文中的论文链接即可免费阅读全文。参考文献:1. Lin, Meng-Chang, et al. An ultrafast rechargeable aluminium-ion battery. Nature (2015).2. Nagaura, T. & Tozawa, K. Lithium ion rechargeable battery. Prog. Batteries Solar Cells 9, 209 (1990).3. Wessells, et al.  Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications. Electrochemic

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论