电动力学复习总结电动力学复习总结答案_第1页
电动力学复习总结电动力学复习总结答案_第2页
电动力学复习总结电动力学复习总结答案_第3页
电动力学复习总结电动力学复习总结答案_第4页
电动力学复习总结电动力学复习总结答案_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章 静 电 场一、 填空题1、若一半径为R的导体球外电势为为非零常数,球外为真空,则球面上的电荷密度为 。答案: 2、若一半径为R的导体球外电势为,为非零常数,球外为真空,则球面上的电荷密度为 . 球外电场强度为 .答案: , 3、均匀各向同性介质中静电势满足的微分方程是 ;介质分界面上电势的边值关系是 和 ;有导体时的边值关系是 和 。答案: 4、设某一静电场的电势可以表示为,该电场的电场强度是_。答案: 5、真空中静场中的导体表面电荷密度_。答案: 6、均匀介质内部的体极化电荷密度总是等于体自由电荷密度_的倍。答案: -(1-)7、电荷分布激发的电场总能量的适用于 情形.答案:全空间充

2、满均匀介质8、无限大均匀介质中点电荷的电场强度等于_。答案: 9、接地导体球外距球心a处有一点电荷q, 导体球上的感应电荷在球心处产生的电势为等于 .答案:10、无电荷分布的空间电势 极值.(填写“有”或“无”)答案:无 11、镜象法的理论依据是_,象电荷只能放在_区域。答案:唯一性定理, 求解区以外空间12、当电荷分布关于原点对称时,体系的电偶极矩等于_。答案:零13、一个内外半径分别为R1、R2的接地导体球壳,球壳内距球心a处有一个点电荷,点电荷q受到导体球壳的静电力的大小等于_。答案:二、 选择题1、泊松方程适用于A.任何电场 B. 静电场; C. 静电场而且介质分区均匀; D.高频电场

3、答案: C 2、下列标量函数中能描述无电荷区域静电势的是A B. C. D. 答案: B3、真空中有两个静止的点电荷和,相距为a,它们之间的相互作用能是A B. C. D. 答案:A4、线性介质中,电场的能量密度可表示为A. ; B.; C. D. 答案:B 5、两个半径为,带电量分别是,且导体球相距为a(a>>),将他们接触后又放回原处,系统的相互作用能变为原来的A. B. C. D. 答案: A 6、电导率分别为,电容率为的均匀导电介质中有稳恒电流,则在两导电介质分界面上电势的法向微商满足的关系是A B. C. D. 答案:C7、电偶极子在外电场中的相互作用能量是A. B. C

4、. D. 三、 问答题1、 由公式可求得电势分布,然后用即可求得场的分布,这种方法有何局限性?答:这种方法适用于空间中所有的电荷分布都给定的情况,而且电荷分布在有限区域内.若电荷分布无限大区域,积分将无意义.例如无限长大带电面的电势,就不能用它计算.2、 应用计算静电场能量时,要求全空间必须充满均匀介质才成立,试说明其理由。并与比较电场能量公式与,说明区别.答:计算静电场能量公式为,公式中的是空间的自由电荷密度,而是空间的自由电荷和极化电荷共同产生的总电势,即,当全空间充满均匀介质时,,所以,。若不是均匀的,所以全空间都要充满均匀介质。电场能量公式: 适用于一切电场;而 仅适用于静电场因为静电

5、场由电荷分布决定,而在非恒定情况下,电场和磁场互相激发,其形式是独立于电荷分布之外的电磁波运动,因而场的总能量不可能完全通过电荷或电流分布表示出来。3、 在静电场中,就一定有吗?答:不一定。当介质为均匀介质时,成立且为常量,从而成立;当介质是线性非均匀时,成立,时,;当介质是各向异性时,时,.强场作用下, 的关系是非线性的,指向电势减少最快的方向。4、 由说出的方向。答: 由,说明的方向与电势梯度方向相反, 电势梯度方向是指向电势增加最快的方向,电场指向电势减小最快的方向。5、 静电场能量公式为,能否看成是能量密度?为什么/答: 不能看成是能量密度.因为积分是对有电荷分布的区域积分,而电场的能

6、量则存在于整个空间。6、 有两个无限大的平行导体平面,它们的法线平行于z轴,其中一个位于z=0处,电势固定为,另一个位于z=d处,电势固定为,两平面间充满电荷,密度为式中为常量,如图所示,试用泊松方程求区域内的电势分布和每个导体平面上电荷面密度.解:由对称性知, 电势与x,y无关,仅是z的函数.故化成积分得:电场在Z=0面上:在Z=d面上:7、 如果,为何不能说恒等于零?答:表示无电荷分布处的电势满足拉普拉斯方程,加上边界条件便可解得电势,无电荷分布处电势不一定为0例如点电荷电场中,电势 ,除点电荷所在处外,满足,但.8、 为什么静电势在边界处是连续的?答:在边界面两侧靠近界面处取两点1,2相

7、距为则趋近于0,有限, 得:即:静电势在边界处连续。9、 如果在两介质分界面上为面偶极层时,两侧电势及电势的法向微商满足何关系?答:设面偶极层电荷密度分别为+,面偶极距密度为,面偶极层法线为n,方向由,对层内点及层外无限靠近层面的, 点,应用边值关系,得 电势的法向微商是连续的在面偶极层上取一无限小面元 ,此面元的电偶极距为 ,它在场点A产生的电势为 式中,是层面对点所张的立体角, 当 无限靠近层面时,结果表明在面偶极层两侧,电势是不连续的,但电势的法向微商是连续的。10、 由唯一性定理可知,当我们求解有限或半无限区域的静电场时,区域外的电荷分布不必知道,有人由此认为区域外的电荷分布对内部电场

8、没有影响,你认为这种说法是对还是错,为什么?答:区域外的电荷分布能够影响区域边界条件,而边界条件是唯一性定理必须知道的内容。唯一性定理实质告诉我们,外部是否有电荷以及它对区域内的电场的影响是可以通过边界条件来体现的11、 在闭合边界面S上,既给定值,又给定值的情形下,泊松方程或拉普拉斯方程的解存在吗?为什么?12、 答:由唯一性定理:在V的边界S上给定或则V内电场唯一确定。所以重要知道二者之一, 电场唯一确定.我们知道或是用来确定通解中的常数的,因此既给定值,又给定值的情形下,当由或所求的电场相等时,柏松方程和拉普拉斯方程的解存在。当由或所求的电场不相等, 泊松方程或拉普拉斯方程无解.13、

9、利用唯一性定理分析导体壳外的电场与壳内电荷的位置关系.分析:如图2-13所示,壳外电势满足不论壳内电荷位置怎样变化,上述边界条件不变,故壳外电场与电荷在壳内位置无关.14、 在书中62页的例题中,为什么E保持球对称性,而D不对称。答:自由电荷密度分布决定的分布,总电荷密度分布决定的分布,整个系统总电荷分布球对称而自由电荷分布不对称,所以球对称而不对称。15、 如果两导体平面相交角为,当n为整数时,可用电象法求解。且有(2n-1)个象电荷。若当n不为整数时,为何不能用电象法求解?··q···2-15图答:当n为整数时,像电荷分布于求解区以外,并且

10、在一圆周上。若当n不为整数时,故使每一个导体平面等势面需要的像电荷,会出现在求解区以内,而且象电荷数目可能为无穷多个,无法求解。例如交角,如下图,虽然找到5个像电荷,但其中的q4在求解区以内.显然不能用电象法求解.+题2-13图16、 电象法的基本思想和理论依据是什么?答:电象法的基本思想是:用若干个放置在求解区域之外的假想的镜像电荷,来等效代替分布于表面的感应电荷的作用,这些假想电荷与已知电荷的总电势只要满足全部边界条件,所得到的解就是唯一正确的解。理论依据是唯一性定理。17、 如果在无限大接地导体平面附近有一带电荷Q的导体球,能否用电象法求解?试说明其理由答:不能。电象法只适用于点电荷,当

11、导体球与无限大平板相距很近时,不能看成点电荷18、 一半径为的接地导体球,离它球心处有一点电荷q,将此系统再放入均匀电场中,的方向与相同,点电荷在什么情况下所受的力为零。答:接地导体球,离它球心处有一点电荷q, 点电荷q与接地导体球之间的静电力等效于位于球内一象电荷(,距球心)与点电荷之间的静电象电荷力,在球心与点电荷的连线上,作用力方向指向球心.大小等于.当均匀电场(的方向与相同)存在时,若电场给点电荷q的力方向与相同, 点电荷下所受的力为零,因此要求点电荷q必须是正电荷,而且满足时点电荷所受的力为零。19、 一个小区域内电荷体系在远处激发的势如何将它展开成各级多极子激发的势的迭加?答:电荷

12、分布为的电荷体系激发的势:在远处,将在处展开为代入得多级展开为是将电荷集中在原点激发的电势。是中心位于原点的体系电偶极子激发的电势。是中心位于原点的电四极子激发的电势。 20、 球对称电荷分布有没有电多极矩?答:不能说明球对称电荷分布系统没有电多极矩,而应该说相对球心这个原点没有电多极矩,而相对其它点有电多极矩.四、 计算和证明 1、一个半径为R的电介质球,极化强度为,电容率为。(1)计算束缚电荷的体密度和面密度:(2)计算自由电荷体密度;(3)计算球外和球内的电势;(4)求该带电介质球产生的静电场总能量。解:(1)(2) (3) (4)2、在均匀外电场中置入半径为的导体球,试用分离变量法求下

13、列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差;(2)导体球上带总电荷解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。当时,电势满足拉普拉斯方程,通解为因为无穷远处 ,所以 ,当 时, 所以 即: 所以 (2)设球体待定电势为,同理可得当 时,由题意,金属球带电量所以 3、均匀介质球的中心置一点电荷,球的电容率为,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。提示:空间各点的电势是点电荷的电势与球面上的极化电荷所产生的电势的迭加,后者满足拉普拉斯方程。解:(一)分离变量法空间各点的电势是点电荷的电

14、势与球面上的极化电荷所产生的电势的迭加。设极化电荷产生的电势为,它满足拉普拉斯方程。在球坐标系中解的形式为:当时,。 当时,为有限,。所以 , 由于球对称性,电势只与R有关,所以, 所以空间各点电势可写成 当时,由 得: 由 得:,则 所以 (二)应用高斯定理在球外,R>R0 ,由高斯定理得:,(整个导体球的束缚电荷),所以 ,积分后得: 在球内,R<R0 ,由介质中的高斯定理得:,所以 ,积分后得: 结果相同。4、 均匀介质球(电容率为)的中心置一自由电偶极子,球外充满了另一种介质(电容率为),求空间各点的电势和极化电荷分布。解:以球心为原点,的方向为极轴方向建立球坐标系。空间各

15、点的电势可分为三种电荷的贡献,即球心处自由电偶极子、极化电偶极子及球面上的极化面电荷三部分的贡献,其中电偶极子产生的总电势为。所以球内电势可写成:;球外电势可写成:其中和为球面的极化面电荷激发的电势,满足拉普拉斯方程。由于对称性,和均与无关。考虑到时为有限值;时,故拉普拉斯方程的解为:由此 (1) (2)边界条件为: (3) (4)将(1)(2)代入(3)和(4),然后比较的系数,可得:于是得到所求的解为:在均匀介质内部,只在自由电荷不为零的地方,极化电荷才不为零,所以在球体内部,只有球心处存在极化电荷。所以 在两介质交界面上,极化电荷面密度为由于,所以5、空心导体球壳的内外半径为和,球中心置

16、一偶极子球壳上带电,求空间各点的电势和电荷分布。解:以球心为原点,以的方向为极轴方向建立球坐标系。在及两均匀区域,电势满足拉普拉斯方程。通解形式均为当时,电势趋于零,所以时,电势可写为 (1)当时,电势应趋于偶极子激发的电势:所以时,电势可写为 (2)设球壳的电势为,则 (3) (4)由(3)得: ;由(4)得: ; ; 所以 (5) (6)再由 得: (7)将(7)代入(5)(6)得: 在处,电荷分布为:在处,电荷分布为:6、在均匀外电场中置入一带均匀自由电荷的绝缘介质球(电容率为),求空间各点的电势。解:以球心为原点,以的方向为极轴方向建立球坐标系。将空间各点的电势看作由两部分迭加而成,一

17、部分为绝缘介质球内的均匀自由电荷产生,另一部分为外电场及感应的极化电荷产生。前者可用高斯定理求得,后者满足拉普拉斯方程。由于对称性,的形式为对于,当时,由高斯定理得: , 当时,由高斯定理得: , 的球外部分: (1)的球内部分: (2)对于,当时,所以当时,为有限,所以边界条件为:时,。即:比较的系数,解得:所以 (3) (4)由(1) (2) (3) (4)得:7、在一很大的电解槽中充满电导率为的液体,使其中流着均匀的电流Jf0。今在液体中置入一个电导率为的小球,求稳恒时电流分布和面电荷分布,讨论及两种情况的电流分布的特点。解:本题虽然不是静电问题,但当电流达到稳定后,由于电流密度Jf0与

18、电场强度E0成正比(比例系数为电导率),所以E0也是稳定的。这种电场也是无旋场,其电势也满足拉普拉斯方程,因而可以用静电场的方法求解。(1)未放入小球时,电流密度Jf0是均匀的,由Jf0可知,稳恒电场E0也是一个均匀场。因此在未放入小球时电解液中的电势便是均匀电场E0的电势。放入小球后,以球心为原点,E0的方向为极轴方向,建立球坐标系。为方便起见,以坐标原点为电势零点。在稳恒电流条件下,所以: (1)由(1)式可推出稳恒电流条件下的边界条件为: (2)设小球内的电势为,电解液中的电势为,则在交界面上有: (3) (4)将及代入(1),得:可见满足拉普拉斯方程考虑到对称性及时,球外电势的解可写成

19、: (5)其中利用了。考虑到时电势为有限值,球内电势的解可写成: (6)因为选处为电势零点,所以,将(5) (6)代入(3) (4)得: (7) (8)由(7)(8)两式可得: , 所以: () ()由此可得球内电流密度:电解液中的电流密度为:(2)两导体交界面上自由电荷面密度(3) 当,即球的电导率比周围电解液的电导率大的多时, , 所以, 当时,同理可得:8、半径为的导体球外充满均匀绝缘介质,导体球接地,离球心为a处(a >)置一点电荷,试用分离变量法求空间各点电势,证明所得结果与电象法结果相同。解:以球心为原点,以球心到点电荷的连线为极轴建立球坐标系。将空间各点电势看作由两部分迭加

20、而成。一是介质中点电荷产生的电势,二是球面上的感应电荷及极化面电荷产生的。后者在球内和球外分别满足拉普拉斯方程。考虑到对称性,与无关。由于时,为有限值,所以球内的解的形式可以写成 (1)由于时,应趋于零,所以球外的解的形式可以写成 (2)由于 (3)当时, (4)当时, (5)因为导体球接地,所以 (6) (7)将(6)代入(4)得: (8)将(7)代入(5)并利用(8)式得: (9)将(8)(9)分别代入(4)(5)得: (10)(11)用镜像法求解:设在球内r0处的像电荷为Q。由对称性,Q在球心与Qf的连线上,根据边界条件:球面上电势为0,可得:(解略), 所以空间的电势为9、接地的空心导

21、体球的内外半径为和,在球内离球心为a处(a <)置一点电荷。用电象法求电势。导体球上的感应电荷有多少?分布在内表面还是外表面?解:假设可以用球外一个假想电荷代替球内表面上感应电荷对空间电场的作用,空心导体球接地,球外表面电量为零,由对称性,应在球心与的连线上。考虑球内表面上任一点P,边界条件要求: (1) 式R为Q到P的距离,R为到P的距离,因此,对球面上任一点,应有常数 (2)只要选择的位置,使,则常数 (3)设距球心为b,则,即 (4)由(2)(3)两式得: 导体内电场为零,由高斯定理可知球面上的感应电荷为,分布于内表面。由于外表面没有电荷,且电势为零,所以从球表面到无穷远没有电场,

22、。10、上题的导体球壳不接地,而是带总电荷,或使具有确定电势,试求这两种情况的电势。又问与是何种关系时,两情况的解是相等的?解:由上题可知,导体球壳不接地时,球内电荷和球的内表面感应电荷的总效果是使球壳电势为零。为使球壳总电量为,只需满足球外表面电量为+即可。因此,导体球不接地而使球带总电荷时,可将空间电势看作两部分的迭加,一是与内表面的产生的电势,二是外表面+产生的电势。, ; , ;, ,所以由以上过程可见,球面电势为。若已知球面电势,可设导体球总电量为,则有:,即:电势的解为:当和满足时,两种情况的解相同。11、在接地的导体平面上有一半径为a的半球凸部(如图),半球的球心在导体平面上,点

23、电荷Q位于系统的对称轴上,并与平面相距为b(b>a),试用电象法求空间电势。解:如图,根据一点电荷附近置一无限大接地导体平板和一点电荷附近置一接地导体球两个模型,可确定三个镜像电荷的电量和位置。,;,;,所以12、有一点电荷Q位于两个互相垂直的接地导体平面所 围成的直角空间内,它到两个平面的距离为a和b, 求空间电势。解:用电像法,可以构造如图所示的三个象电荷来代替两导体板的作用。13、设有两平面围成的直角形无穷容器,其内充满电导率为的液体。取该两平面为xz面和yz面在和两点分别置正负电极并通以电流I,求导电液体中的电势。解:本题的物理模型是,由外加电源在A、B两点间建立电场,使溶液中的载流子运动形成电流I,当系统稳定时,属恒定场,即,。对于恒定的电流,可按静电场的方式处理。于是在A点取包围A的高斯面,则,由于,所以 可得: 。同理,对B点有: 又,在容器壁上, ,即无电流穿过容器壁。由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论