




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、幂、指、对函数及方程方法指导:1、 幂函数1. 幂函数的定义函数为常数,称为幂函数,其中x是自变量,前面的系数为12. 幂函数的图像研究的图像特点,其中是既约分数(最简分数)3. 幂函数的性质(1) 对于一切幂函数,当时,总有,所以幂函数在第一象限均有图像,且幂函数图像不可能出现在第四象限(2) 幂函数一定过点(3) 当时,在上递增,图像过点; 当时,向x轴正方向递增; 当时,向y轴正方向递增 当时,是一条不过点的直线; 当时,在上递减,图像过点,图像向上与y轴无限接近,向右与x轴无限接近(4) 在的右侧由上至下k递减2、 指数函数1. 指数运算法则(1) (2) (3) 2. 指数函数的定义
2、函数称为指数函数3. 指数函数的图像4. 指数函数的性质(1) 函数图像在x轴上方,函数值恒大于零,故函数图像不可能在三、四象限(2) 指数函数的图像经过点,(3) 函数定义域为R,值域为(4) 非奇非偶函数(5) 无零点(6) 函数在内是增函数;函数在 内是减函数(7) 在时,第一象限内,增长速度十分惊人;第二象限内,增 长缓慢; 在时,第一象限内;第二象限内(8) 无最值(9) 函数图像与x轴无限接近,x轴叫做函数的渐近线(10) 的图像与的图像关于y轴对称3、 指数方程(1) 同底型:(2) 基本型: ; (3) 代换型: ,令(注意t的范围),转化为求解; ,令(注意t的范围),转化为
3、求解(4) 图解型:一般不可直接求解的可利用图象法求近似值4、 对数1. 对数的定义若,那么数b叫做以a为底N的对数,记作,其中a叫做对数的底数,N叫做真数注意底数的范围是;真数的取值范围是2. 对数的性质若,那么(1) 零和负数没有对数(2) ,(3) ,(4) ,(5) (换底公式),特别地【拓展公式】3. 常用的对数以10为底的对数叫做常用对数,通常写做;以无理数为底的对数叫做自然对数,通常写做5、 对数函数1. 对数函数的定义函数称为对数函数2. 对数函数的图像3. 对数函数的性质(1) 对数函数的图像都在y轴右侧(2) 对数函数的图像都经过点(3) 函数定义域,值域R(4) 非奇非偶
4、函数(5) 对数函数在上是增函数,函数值开始增长较快,到了某一值后增长速度变慢;对数函数在上是减函数,函数值开始减小较快,到了某一值后减小速度变慢(6) 对数函数,当时,;当时,; 对数函数,当时,;当时,(7) y轴是对数函数的渐近线(8) 当时,底数越大,图像越靠近x轴;当时,底数越小,图像越靠近x轴(9) 对数函数与指数函数互为反函数6、 对数方程(1) 同底型:(2) 基本型:(3) 代换型:,令(注意t的范围),转化为求解(4) 图解型:一般不可直接求解的可利用图像法求近似值典型题解: 幂、指、对函数的图像及性质 特殊方程1.比较下列各题中两个值的大小(1)和 (2)和(3)和1 (4)和2若,则( )A4 B16 C256 D813如图,幂函数的图像关于y轴对称,且与x轴y轴均无交点,求此函数解析式4. 关于x的方程,的根分别为则_5 使成立的x的取值范围是_.6.方程实数解的个数是( )A 0 B 1 C 2 D 37已知关于x的方程有一个根是2,求a的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安利营养保健配方
- 2022年人口学校教案
- 股权激励与员工竞业禁止协议书
- 二年级数学计算题专项练习1000题汇编
- 二零二五版海洋工程高低压配电系统安装合同
- 2025年度酒店管理履约担保合同模板
- 二零二五年度高空作业吊车转让与安全操作手册协议
- 2025版农村电网改造供电协议合同范本
- 二零二五版古村落保护施工劳务分包服务协议
- 二零二五年度洞庭湖区重点垸堤防加固项目施工组织与进度管理合同
- XX新任校长与学校班子成员见面会上的讲话
- 芬太尼贴剂的护理
- 村集体资金入股合同范本
- 要素式民事起诉状(房屋租赁合同纠纷)
- 高级卷烟商品营销员理论知识
- 2025年中级消防设施操作员理论知识考试真题(后附专业答案和解析)
- 老年病瞻望的护理
- 2025南京市劳动合同模板
- 异常子宫出血护理措施
- 基于项目制教学的未来课堂构建探讨
- QGDW12505-2025电化学储能电站安全风险评估规范
评论
0/150
提交评论