2乘600MW火电站电气设计说明_第1页
2乘600MW火电站电气设计说明_第2页
2乘600MW火电站电气设计说明_第3页
2乘600MW火电站电气设计说明_第4页
2乘600MW火电站电气设计说明_第5页
已阅读5页,还剩103页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、. . . 一、毕业设计(论文)任务课题容600MW 火电机组目前已经是我国电力系统中的主力机组,由 600MW 机组为主的火力发电厂也属于我国电力系统的大型主力发电厂。大型火电厂的电气主接线设计,包括方案拟定、设备选型和装置布置,在不同的前提下都有不同的要求,从而得到不同的结果。本课题的设计容主要完成 2×600MW 机组火力发电厂的电气主接线方案拟定、设备选型和装置布置的初步设计,同时还应考虑今后扩建的可能性,并采用 CAD 绘制指定的图纸。课题任务要求1熟悉发电厂电气一次部分初步设计的围和步骤,掌握设计方法,树立工程观点;2熟练掌握 AutoCAD 绘图软件;3根据原始资料,通

2、过相应的分析、计算和比较,确定电气主接线方案,选择主变压器的台数、容量和型式,选择各电压级各主要电气设备,进行电压互感器和电流互感器的配置,确定各电压级的配电装置型式,完成设备的整体布置设计;4与厂用电部分配合,完成毕业设计论文的写作和图纸绘制;5总结课题,并通过毕业论文答辩。108 / 108课题完成后应提交的资料(或图表、设计图纸)1毕业设计论文与相关图纸;2英文翻译容:原文和译文;3学校要求提交的其他设计文件和材料。主要参考文献与外文翻译文件(由指导教师选定)1 锡普. 发电厂电气部分M,中国电力,1992,102-129,168-206.2 西北电力.电力工程设计手册M,科学技术,19

3、72,53-88,255-279.3 西北电力. 电力工程电气设计手册(电气一次部分)M,中国电力,1987,45-62,119-123,214-260.4 西北电力. 电力工程电气设备手册M,中国电力,1990.5 黄纯华. 发电厂电气部分课程设计参考资料M,中国电力,1987.6 胡志光. 火电厂电气设备与运行M,中国电力,2001.7 郭启全. AutoCAD2000 基础教程M,理工大学,2000.8 忠. 新编工厂电气设备手册M,兵器工业,1994.9 涂光瑜. 汽轮发电机与电气设备M,中国电力,1998,179-288.10 尚发. 大型发电厂电气主接线探讨J,中国电力,2003

4、年 36 卷 7 期,起止页码:64-66.11 志. 大型电厂 500KV 电气主接线研究J,电力技术经济,2003 年 4 期,起止页码:34-35.12 民,寇正华. 电站电气一次设计J,海河水利,1997 年 3 期,起止页码:3536.13 Srdjan Skok ph.D. Transient Analysis of Auxiliary DC Installations in Power Plantsand SubstationsJ,IEEE CHF,8-11 Nov. 2004Page(s):277 280.14 IEEE Recommended Practice for the

5、 Design of DC Auxiliary Power Systems forGenerating StationsJ,IEEE STD 946-1992,Decemeber,2nd 1992.注:1. 此任务书由指导教师填写。如不够填写,可另加页。2. 此任务书最迟必须在毕业设计(论文)开始前一周下达给学生。3. 此任务书可从教务处网页2×600MW 火电厂电气主接线与设备布置方案设计摘要本设计讨论的是 2×600MW 火电厂电气主接线方案与设备布置,火电厂电气一次部分设计是电力工程设计的主要工作之一,设计的合理与否对于提高电力系统运行的可靠性、经济性具有重要意义。它

6、对发电厂电气设备选择和布置,继电保护和自动装置的设计起到决定性作用。设计详细说明了各种设备选择的基本的要求和依据。在分析原始资料,确保供电可靠,调度灵活,满足各项技术要求的基础上,选择出一种与发电厂在系统中的地位和作用相适应的接线方式,接下来选择了主变压器,进行了短路计算,设备选择,设备校验,然后进行了设备布置方案的设计,绘制了主接线图、配电装置平面布置图、配电装置进(出)线断面图和配电装置配置图。本设计注意了新技术和新型设备的应用,把握了当代设计新趋势。关键词:发电厂;电气主接线;短路计算;设备选择 2×600MW 火电厂电气主接线方案与设备布置设计THE DESIGN OF MA

7、IN ELECTRICAL WIRING ANDLAYOUTIN THERMAL POWER PLANT OF 2× 600MWABSTRACTThe design is refered to the part of 2×600MW thermal power plant mainelectricity wiring and equipment layout.The design of substation electrical first part isone of the key tasks in the power engineering design. Whethe

8、r it is reasonable or notis of great significance to raise reliability and economy of power system running . Itplays a decisive role in choice and arrangement of electrical equipment in substation,in design of relay protective and automatic.The paper detail the choice of various equipment basic requ

9、irements and basis.On the analysis of the original material, and ensuring reliable power supply,scheduling, meet the technical requirements for fle xible and choose the right mainelectrical wiring design,in the system and the status and suited to the role of theconnection mode,and then choose the ma

10、in transformer and make short circuitcalculation,choose and calibrate equipment, then design the the equipment layout. Inaddition, the final of the thesis added main electrical wiring, equipment layout ofpower distribution , distribution device cut(out) into line and configuration diagram ofdistribu

11、tion device .The new technology and new equipment are applied in the design, and itaccommodates to the new trends in contemporary design.Key words: Thermal power plant ; The main electrical wiring ; short circuitcalculation;equipment selection2×600MW 火电厂电气主接线与设备布置方案设计目录第一篇 设计说明书1 电气主接线设计·&

12、#183;·················································&

13、#183;·················································&

14、#183;·· 11.1 电气主接线·············································&#

15、183;·················································&#

16、183;······ 11.1.1 电气主接线的基本要求········································&#

17、183;······························ 11.1.2 电气主接线的设计原则················&#

18、183;·················································&#

19、183;···· 11.2 发电机电压级接线···········································

20、··············································· 21.3 220 kV 电气主接线

21、··················································

22、········································21.3.1 单母线分段带旁路接线·······&

23、#183;·················································&

24、#183;············· 21.3.2 双母线接线··································

25、··················································

26、······· 31.4 6 kV 厂用电接线········································&#

27、183;·················································&#

28、183;···42 负荷计算与变压器选择············································&

29、#183;··············································· 62.1 厂用负荷计算&

30、#183;·················································&

31、#183;·············································· 62.2 主变台数、容量和型式的确定

32、··················································

33、···················· 62.2.1 主变压器台数的确定···························&

34、#183;··············································· 72.2.2 主变压器容

35、量的确定·················································&#

36、183;························· 72.2.3 主变压器型式的选择·····················

37、83;·················································

38、83;··· 72.3 厂用变台数、容量和型式的确定···········································&

39、#183;····················· 92.3.1 工作变压器的台数和型式的确定························

40、83;······························ 92.3.2 厂用变压器的容量的确定················&#

41、183;·················································&#

42、183; 93 最大持续工作电流与短路计算··············································

43、83;······························· 113.1 各回路最大持续工作电流···············

44、83;·················································

45、83;·········· 113.2 短路电流计算点的确定和短路电流计算结果···································&

46、#183;······· 113.2.1 短路电流计算的目的·······································&

47、#183;································· 113.2.2 电气设备基本假定·············&#

48、183;·················································&#

49、183;············· 113.2.3 短路电流计算的一般规定·································

50、································ 124 主要电气设备选择················

51、;··················································

52、;································ 142×600MW 火电厂电气主接线与设备布置方案设计4.1 高压断路器的选择说明··········

53、··················································

54、··················· 144.2 隔离开关的选择····························

55、3;·················································

56、3;············ 164.3 母线的选择···································

57、3;·················································

58、3;············· 174.3.1 220kV 母线的选择·································&#

59、183;··········································· 174.3.2 发电机出口封闭母线的选择···

60、;··················································

61、;········ 184.4 绝缘子和穿墙套管的选择说明······································

62、83;···························· 184.4.1 型式选择···················&#

63、183;·················································&#

64、183;······················· 184.4.2 额定电压选择························

65、;··················································

66、;··········· 194.4.3 穿墙套管的额定电流选择与窗口尺寸的配合································· 194.4.

67、4 穿墙套管的热稳定校验················································

68、····················· 194.4.5 动稳定校验··························

69、3;·················································

70、3;············ 194.5 电流互感器的配置和选择··································

71、3;········································ 204.5.1 电流互感器的配置·······

72、;··················································

73、;···················· 204.5.2 技术条件···························

74、3;·················································

75、3;··············· 214.5.3 动稳定校验································&#

76、183;·················································&#

77、183;······ 214.6 电压互感器的配置和选择说明········································

78、··························· 214.6.1 互感器的配置····················

79、83;·················································

80、83;·············· 224.6.2 技术条件·································&#

81、183;·················································&#

82、183;········· 224.7 各主要电气设备选择结果一览表·····································

83、;··························· 224.8 电气总平面布置与配电装置的选择···················&

84、#183;······································· 234.8.1 配电装置应满足的基本要求······

85、3;·················································

86、3;···· 234.8.2 配电装置的设计原则··········································

87、3;······························ 234.8.3 高压配电装置的选择················

88、3;·················································

89、3;······ 231 短路电流计算书·········································

90、3;·················································

91、3;··········· 251.1 各元件电抗标幺值的计算···································

92、3;········································ 251.2 220 kV 母线短路电流的计算······

93、;··················································

94、;················261.3 600MW 发电机出口的短路电流······························&

95、#183;···································282 主要电气设备选择计算书···········

96、3;·················································

97、3;························· 312.1 高压断路器的选择计算······················

98、;··················································

99、;········ 312.2 高压隔离开关的选择计算·······································

100、;····································· 312×600MW 火电厂电气主接线与设备布置方案设计2.3 母线的选择计算·····

101、83;·················································

102、83;···································· 322.3.1 220kV 母线的选择··········&

103、#183;·················································&

104、#183;················ 322.3.2 发电机出口封闭母线的选择·····························

105、3;······························· 332.4 高压绝缘子和穿墙套管的选择计算···············

106、············································· 342.5 电流互感器的选择计算··&

107、#183;·················································&

108、#183;··························· 342.5.1 220kV 侧电流互感器的选择··················&

109、#183;·········································· 342.5.2 21kV 侧电流互感器的选择···&#

110、183;·················································&#

111、183;········· 352.6 电压互感器的选择计算·····································

112、83;·········································· 362.6.2 220kV 电压互感器的选择···

113、3;·················································

114、3;··········· 36结 论·····································

115、3;·················································

116、3;···································· 37参 考 文 献············

117、··················································

118、··················································

119、 38致 ·················································&

120、#183;·················································&

121、#183;························ 39附录 设计图纸·······················

122、83;·················································

123、83;·································· 41附录 1:电气主接线图附录 2:220 kV 总平面布置图附录 3:220 kV 出线、主变间隔断面图附录 4:220 kV 母联、3#厂用变间隔断面图附录 5:220 kV PT

124、/I 母联接线桥间隔断面图2×600MW 火电厂电气主接线与设备布置方案设计第一篇 设计说明书1 电气主接线设计1.1 电气主接线电气主接线既是电气设计的首要部分,又是构成电气系统的主要环节。电气主接线是由电气设备通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称之电气主系统或一次接线。主接线代表了发电厂电气部分的主体结构,是电力系统网络结构的重要组成部分,直接影响运行的可靠性、灵活性并对电器选择、配电装置布置、继电保护、自动装置和控制方式的拟定都有决定性的关系。因此,主接线的正确合理设计,必须综合处理各个方面的因素,经过技术、经济论证比较后方可确

125、定5。1.1.1 电气主接线的基本要求1)运行的可靠性:主接线系统应保证对用户供电的可靠性,特别是保证对重要负荷的供电。2)运行的灵活性:主接线系统应能灵活地适应各种工作情况,特别是当一部分设备检修或工作情况发生变化时,能够通过倒换开关的运行方式,做到调度灵活,不中断向用户的供电。在扩建时应能很方便的从初期建设到最终接线。3)主接线系统还应保证运行操作的方便以与在保证满足技术条件的要求下,做到经济合理,尽量减少占地面积,节省投资1。1.1.2 电气主接线的设计原则以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的

126、前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则4。本设计发电厂为设计规模如下:1)发电机和变压器采用单元接线。2)220kV 线路 4 回,另预留 2 回备用。第 1 页 共 40 页2×600MW 火电厂电气主接线与设备布置方案设计3)高压厂用电采用 6kV。4)低压厂用采用 380/220V 的三相四线。1.2 发电机电压级接线发电机和变压器采用单元接线。单元接线是大型机组广泛采用的接线形式。发电机出口不装断路器,为调试方便可装隔离开关。对 220MW 以上机组,发电机出口采用分相封闭母线,为减少

127、开断点,亦可不装隔离开关,但应留可拆点。以利于机组调试。这种单元接线,避免了由于额定电流或短路电流过大,使得选择出口断路器时受到制造条件或价格高等原因造成的困难。接线图如下图 1.1 所示。图 1.1 发电机-双绕组变压器单元接线(采用封母闭线)1.3 220kV 电气主接线由于此发电厂为地区大型发电厂,考虑到为 220kV 高压配电装置接线且出线为 4回,按发电厂技术标准与规程规,首先要满足可靠性准则的要求,有两种可能接线方式:单母线分段带旁路接线和双母线接线。1.3.1 单母线分段带旁路接线其可靠性比单母线分段高,断路器经过长期运行或者开断一定次的短路电流之后,其机械性能和灭弧性能都会下降

128、,必须进行检修以恢复其性能。一般情况下,该回路必须停电才能检修。设置旁路母线的唯一目的,就是可以不停电的检修任一台出线断路器,但旁路母线不能代替母线工作。其极大的提高了可靠性,但这增加了一台旁路断路器的投资。但旁路母线系统增加了许多设备,造价昂贵,运行复杂,只有在出线断路器不允许的情况下,才应设置旁路母线。凡采用许多年不需检修的 SF6 断路器时,可不装设旁路母线6。接线图如下图 1.2 所示。第 2 页 共 40 页2×600MW 火电厂电气主接线与设备布置方案设计图 1.2 单母线分段带有专用旁路母线接线1.3.2 双母线接线此接线有两组母线,并且互为备用。每一电源和出线的回路,

129、都装有一台断路器,有两组母线隔离开关,可分别与两组母线连接。两组母线之间的联络,通过母线联络断路器来实现。此接线停电的机会减小了,必需的停电时间缩短了,供电可靠、调度灵活、扩建方便、便于实验。但当母线故障时,隔离开关作为倒换操作电器,使操作的与时性、快速性受到一定影响。接线图如下图 1.3 所示。图 1.3 双母线接线综述:从技术、经济与供电可靠性等多方面进行比较,此发电厂 220kV 电气主接线选择双母线接线方式。第 3 页 共 40 页2×600MW 火电厂电气主接线与设备布置方案设计1.4 6kV 厂用电接线按发电厂技术标准与规程规,高压厂用电采用 6kV,高压厂用电系统应采用

130、单母线分段接线。采取可靠的“按炉分段”的接线原则,每台锅炉由两段母线供电, 两段母线由同一台厂用变压器供电。低压厂用母线采用单母线分段接线,即按炉分段。且由于低压系统负荷较多,故采用动力与照明分开,分组供电。单母线分段的特点如下:单母线用分段断路器进行分段,当任一段母线或某一台母线隔离开关故障与检修时,自动或手动跳开分段断路器,仅有一半线路停电,另一段母线上的各回路仍可正常运行。重要的负荷分别从两段母线上各引出一条供电线路,就保证了足够的供电可靠性,两段母线同时故障的概率较小,此接线还具有良好的灵活性、经济性,但当一段母线或母线隔离开关故障或检修时,该段母线的回路都要在检修期停电1。接线图如下

131、图 1.4 所示。图 1.4 单母线分段接线低压厂用采用 380/220V 的三相四线制系统。厂用工作电源从主变压器的低压侧引接,供给本机组厂用负荷。接线图如 1.5 所示。图 1.5 厂用电源变压器低压侧引接第 4 页 共 40 页2×600MW 火电厂电气主接线与设备布置方案设计高压厂用启动(备用)电源经由启/备变压器从 220kV 母线上引接。接线图如 1.6所示。图 1.6 从发电机电压母线上引接低压厂用启动(备用)电源引自相应的高压厂用 6kV 母线段。第 5 页 共 40 页2×600MW 火电厂电气主接线与设备布置方案设计2 负荷计算与变压器选择2.1 厂用负

132、荷计算计算变压器的容量时,不但要统计变压器连接分段母线上实际所接电动机的台数和容量,还要考虑它们是经常工作的还是备用的,是连续运行的还是断续运行的。为了计与这些不同的情况,选出既能满足负荷要求又不致容量过大的变压器,所以又提出按使用时间对负荷运行方式进行分类。经常负荷是指每天都要使用的电动机;不经常负荷是指只在检修、事故或机炉起停期间使用的负荷;连续负荷是指每次连续运转 2 小时以上的负荷;短时负荷是指每次仅运转 10120min 的负荷;断续负荷是指反复周期性地工作,其每一周期不超过 10min 的负荷5。变压器母线分段上负荷计算原则如下:1)经常连续运行的负荷应全部计入。如吸风机、送风机、电动给水泵、循环水泵、凝结水泵、真空泵等电动机。2)连续而不经常运行的负荷应计入。如充电机、事故备用油泵、备用电动给水泵等电动机。3)经常而断续运行的负荷亦应计入。如疏水泵、空压机等电动机。4)短时断续而又不经常运行的负荷一般不予计算。如行车、电焊机等。但在选择变压器时,变压器容量应留有适当裕度。5)由同一台变压器供电的互为备用的设备,只计算同时运行的台数。除了考虑所接的负荷因素外,还应考虑:自启动时的电压降;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论