版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.3 函数的基本性质函数的基本性质最大最大(小小)值值复习引入复习引入问题问题1 函数函数f (x)x2. 在在(, 0上是减函数,上是减函数,在在0, +)上是增函数上是增函数. 当当x0时,时,f (x)f (0), x0时,时, f (x)f (0). 从而从而xR,都有,都有f (x) f (0).因此因此x0时,时,f (0)是函数值中的是函数值中的最小值最小值.复习引入复习引入问题问题2 函数函数f (x)x2. 同理可知同理可知xR,都有都有f (x)f (0). 即即x0时,时,f (0)是函数值中的是函数值中的最大值最大值.函数最大值概念:函数最大值概念:讲授新课讲授新课函
2、数最大值概念:函数最大值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I. 如果存在实数如果存在实数M,满足:,满足:讲授新课讲授新课函数最大值概念:函数最大值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I. 如果存在实数如果存在实数M,满足:,满足:(1)对于任意对于任意xI,都有,都有f (x)M.讲授新课讲授新课函数最大值概念:函数最大值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I. 如果存在实数如果存在实数M,满足:,满足:(1)对于任意对于任意xI,都有,都有f (x)M.(2)存在存在x0I,使得,使得f (x0)M
3、.讲授新课讲授新课函数最大值概念:函数最大值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I. 如果存在实数如果存在实数M,满足:,满足:(1)对于任意对于任意xI,都有,都有f (x)M.(2)存在存在x0I,使得,使得f (x0)M.那么,称那么,称M是函数是函数yf (x)的的最大值最大值.讲授新课讲授新课函数最小值概念:函数最小值概念:讲授新课讲授新课函数最小值概念:函数最小值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I.如果存在实数如果存在实数M,满足:,满足:讲授新课讲授新课函数最小值概念:函数最小值概念:一般地,设函数一般地,设函数yf
4、 (x)的定义域为的定义域为I.如果存在实数如果存在实数M,满足:,满足:(1)对于任意对于任意xI,都有,都有f (x)M.讲授新课讲授新课函数最小值概念:函数最小值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I.如果存在实数如果存在实数M,满足:,满足:(1)对于任意对于任意xI,都有,都有f (x)M.(2)存在存在x0I,使得,使得f (x0)M.讲授新课讲授新课函数最小值概念:函数最小值概念:一般地,设函数一般地,设函数yf (x)的定义域为的定义域为I.如果存在实数如果存在实数M,满足:,满足:(1)对于任意对于任意xI,都有,都有f (x)M.(2)存在存在x0I,使得,使得f (x0)M.那么,称那么,称M是函数是函数yf (x)的的最小值最小值.讲授新课讲授新课例例1 设设f (x)是定义在区间是定义在区间6, 11上的上的函数函数. 如果如果f (x)在区间在区间6, 2上递减,上递减,在区间在区间2, 11上递增,画出上递增,画出f (x)的一的一个大致的图象,从图象上可以发现个大致的图象,从图象上可以发现f(2)是函数是函数f (x)的一个的一个 .讲授新课讲授新课求函数的最大值和最小值求函数的最大值和最小值.例例2 已知函数已知函数y12 x(x2,6),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房地产项目开发商担保委托合同样本3篇
- 2024年度科技创新园区土地使用权永久转让与科技研发合作合同3篇
- 2024年标准消防给水管道安装施工合作合同版
- 2024年IT安全解决方案服务外包合同
- 2024版人工智能助手研发与授权使用合同3篇
- 2024午托承包合同-高校学生午托与学习辅导服务协议3篇
- 2024年度教育设施建设土地征用合同3篇
- 2024版储能设备箱涵安装劳务专业服务合同6篇
- 2024版个人教育投资借款合同范本3篇
- 2024年农业机械融资租赁合同担保协议3篇
- 小学六年级数学100道题解分数方程
- 入团志愿书(2016版本)(可编辑打印标准A4) (1)
- 工业区位和区位因素的变化(以首钢为例)
- 物业管理搞笑小品剧本 搞笑小品剧本:物业管理难啊
- 《木偶兵进行曲》教案
- 五四制青岛版一年级科学上册第四单元《水》全部教案
- GB∕T 39757-2021 建筑施工机械与设备 混凝土泵和泵车安全使用规程
- 组织架构图PPT模板
- 外研版七年级上ModuleUnit教学反思
- 操作系统课程设计报告:Linux二级文件系统设计
- 阑尾炎病历模板
评论
0/150
提交评论