下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.求数列通项公式常用的七种方法林彩凡 山东省东阿县实验高中 252200一、公式法:已知或根据题目的条件能够推出数列为等差或等比数列,根据通项公式或进行求解.例1:已知是一个等差数列,且,求的通项公式.分析:设数列的公差为,则解得二、前项和法:已知数列的前项和的解析式,求. 例2:已知数列的前项和,求通项. 分析:当时,= 而不适合上式,三、与的关系式法:已知数列的前项和与通项的关系式,求. 例3:已知数列的前项和满足,其中,求. 分析:- 得 即 又不适合上式 数列从第2项起是以为公比的等比数列注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由与的关系式,类比出与的关系式,然后两式作
2、差,最后别忘了检验是否适合用上面的方法求出的通项.四、累加法:当数列中有,即第项与第项的差是个有“规律”的数时,就可以用这种方法. 例4:,求通项 分析: 以上各式相加得 又,所以,而也适合上式,五、累乘法:它与累加法类似,当数列中有,即第项与第项的商是个有“规律”的数时,就可以用这种方法. 例5: 求通项 分析: 故 而也适合上式,所以六、构造法: 、一次函数法:在数列中有(均为常数且),从表面形式上来看是关于的“一次函数”的形式,这时用下面的方法:一般化方法:设 则 而 即 故数列是以为公比的等比数列,借助它去求 例6:已知 求通项 分析:数列是以为首项,为公比的等比数列 故 、取倒数法:
3、这种方法适用于(均为常数),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于的式子. 例7:已知 求通项 即 数列是以为首项,以为公差的等差数列、取对数法:一般情况下适用于(为非零常数) 例8:已知 求通项 分析:由知在的两边同取常用对数得 即数列是以为首项,以为公比的等比数列 故七、“(为常数且不为,)”型的数列求通项.例9:设数列的前项和为,已知,求通项. 解:两式相减得 即 上式两边同除以得 (这一步是关键)令得 (想想这步是怎么得来的)数列从第项起,是以为首项,以为公比的等比数列故 又,所以不适合上式注:求(为常数且不为,)”型的数列求通项公式的方法是等式的两边同除以,得到一个“”型的数列,再用上面第六种方法里面的“一次函数法”便可求出的通式,从而求出.另外本题还可以由得到即,按照上面求的方法同理可求出,再求.您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游酒店项目策划方案
- 葡萄酒生产企业生产现场类隐患排查项目清单、基础管理类隐患排查项目清单
- 酒厂传统营销方案
- 浅析债务加入概念、类型、契约
- 统编版2024-2025学年四年级语文上册期中素养测评基础卷 (含答案)
- 福建省漳州市华安县第一中学2024-2025学年高三上学期10月期中联考数学试题(含答案)
- 辽宁行政职业能力模拟65
- 安徽申论B类模拟67
- 关于成立文创公司商业计划书
- 地方公务员广东申论256
- 小学劳动教育典型案例
- 工业大数据分析与决策智能
- 心理危机评估中的法律与伦理问题
- 《SQL基础知识培训》课件
- 2017版高中物理新课标解读
- 通过游戏培养幼儿的社交能力
- 癌症晚期护理查房课件
- 幼儿园公开课:中班语言《跑跑镇》有声动态课件
- 小学道德与法治人教部编版(新)五年级下册(2020)-红军不怕远征难1.0-公开课
- 排污许可证申请与核发技术规范 酒、饮料制造工业(HJ 1028-2019)
- 守株待兔-幼儿成语故事
评论
0/150
提交评论