版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、§10.3随机事件的概率2014高考会这样考1.考查随机事件的概率,以选择或填空题形式出现;2.考查互斥事件、对立事件的概率;3.和统计知识相结合,考查概率与统计的综合应用复习备考要这样做1.理解随机事件、互斥事件、对立事件的关系;2.理解频率和概率的含义;3.熟练掌握概率运算公式,并能根据事件特点灵活应用1 随机事件和确定事件(1)在条件S下,一定会发生的事件,叫做相对于条件S的必然事件(2)在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件(3)必然事件与不可能事件统称为相对于条件S的确定事件(4)在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件(5)确
2、定事件和随机事件统称为事件,一般用大写字母A,B,C表示2 频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率3 事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)BA(或AB)相等关系若BA且ABAB并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,
3、称此事件为事件A与事件B的并事件(或和事件)AB(或AB)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)AB(或AB)互斥事件若AB为不可能事件,则事件A与事件B互斥AB对立事件若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件ABP(AB)P(A)P(B)14. 概率的几个基本性质(1)概率的取值范围:0P(A)1.(2)必然事件的概率P(E)1.(3)不可能事件的概率P(F)0.(4)互斥事件概率的加法公式如果事件A与事件B互斥,则P(AB)P(A)P(B)若事件B与事件A互为对立事件,则P(A)1P(B)难点正
4、本疑点清源1 频率和概率(1)频率与概率有本质的区别,不可混为一谈频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象当试验次数越来越多时,频率向概率靠近,只要次数足够多,所得频率就可以近似地当作随机事件的概率(2)概率从数量上反映了一个事件发生的可能性的大小;概率的定义实际上也是求一个事件的概率的基本方法2 互斥事件与对立事件互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要但不充分条件,而“对立”
5、则是“互斥”的充分但不必要条件1 对飞机连续射击两次,每次发射一枚炮弹设A两次都击中飞机,B两次都没击中飞机,C恰有一弹击中飞机,D至少有一弹击中飞机,其中彼此互斥的事件是_,互为对立事件的是_答案A与B,A与C,B与C,B与DB与D解析设I为对飞机连续射击两次所发生的所有情况,因为AB,AC,BC,BD.故A与B,A与C,B与C,B与D为彼此互斥事件,而BD,BDI,故B与D互为对立事件2 给出下列三个命题,其中正确命题有_个有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;随机事件发生的频率就是这个随机事件发生
6、的概率答案0解析错,不一定是10件次品;错,是频率而非概率;错,频率不等于概率,这是两个不同的概念3 在n次重复进行的试验中,事件A发生的频率为,当n很大时,P(A)与的关系是()AP(A) BP(A)<CP(A)> DP(A)答案A解析在n次重复进行的试验中,试验次数很大时,频率可近似当作随机事件的概率4 从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A至少有一个红球与都是红球B至少有一个红球与都是白球C至少有一个红球与至少有一个白球D恰有一个红球与恰有两个红球答案D5 某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射
7、手在一次射击中不超过8环的概率为()A0.5 B0.3 C0.6 D0.9答案A解析依题设知,此射手在一次射击中不超过8环的概率为1(0.20.3)0.5.题型一事件的关系及运算例1判断下列给出的每对事件,是互斥事件还是对立事件,并说明理由从40张扑克牌(红桃、黑桃、方块、梅花点数从110各10张)中,任取一张(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”思维启迪:判断事件之间的关系可以紧扣事件的分类,结合互斥事件,对立事件的定义进行分析解(1)是互斥事件,不是对立事件原因:从40张扑克牌中任意抽取1张,“抽出红
8、桃”与“抽出黑桃”是不可能同时发生的,所以是互斥事件,但是,不能保证其中必有一个发生,这是由于还有可能抽出“方块”或者“梅花”,因此,二者不是对立事件(2)既是互斥事件,又是对立事件原因:从40张扑克牌中,任意抽取1张“抽出红色牌”与“抽出黑色牌”两个事件不可能同时发生,但其中必有一个发生,所以它们既是互斥事件,又是对立事件(3)既不是互斥事件,也不是对立事件原因:从40张扑克牌中任意抽取1张“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个事件可能同时发生,如抽得点数为10,因此,二者不是互斥事件,当然不可能是对立事件 某城市有甲、乙两种报纸供居民们订阅,记事件A为“只订甲报纸”,事件
9、B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订”判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件(1)A与C;(2)B与E;(3)B与C;(4)C与E.解(1)由于事件C“至多订一种报纸”中有可能“只订甲报纸”,即事件A与事件C有可能同时发生,故A与C不是互斥事件(2)事件B“至少订一种报纸”与事件E“一种报纸也不订”是不可能同时发生的,故B与E是互斥事件由于事件B不发生可导致事件E一定发生,且事件E不发生会导致事件B一定发生,故B与E还是对立事件(3)事件B“至少订一种报纸”中有这些可能:“只订甲报纸”、“只订乙报纸”、“
10、订甲、乙两种报纸”,事件C“至多订一种报纸”中有这些可能:“一种报纸也不订”、“只订甲报纸”、“只订乙报纸”,由于这两个事件可能同时发生,故B与C不是互斥事件(4)由(3)的分析,事件E“一种报纸也不订”是事件C的一种可能,即事件C与事件E有可能同时发生,故C与E不是互斥事件题型二随机事件的频率与概率例2某企业生产的乒乓球被2012年伦敦奥运会指定为乒乓球比赛专用球,目前有关部门对某批产品进行了抽样检测,检查结果如下表所示:抽取球数n501002005001 0002 000优等品数m45921944709541 902优等品频率(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一
11、个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)思维启迪:可以利用公式计算频率,在试验次数很大时,用频率来估计概率解(1)依据公式f,计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n不同,计算得到的频率值不同,但随着抽取球数的增多,频率在常数0.950的附近摆动,所以质量检查为优等品的概率约为0.950.探究提高频率是个不确定的数,在一定程度上频率可以反映事件发生的可能性大小,但无法从根本上刻画事件发生的可能性大小但从大量重复试验中发现,随着试验次数的增多,事件发生的频率就会稳定于某一固定的值,
12、该值就是概率某市统计的20092012年新生婴儿数及其中男婴数(单位:人)见下表:时间2009年2010年2011年2012年新生婴儿数21 84023 07020 09419 982男婴数11 45312 03110 29710 242(1)试计算男婴各年的出生频率(精确到0.001);(2)该市男婴出生的概率约是多少?解(1)2009年男婴出生的频率为fn(A)0.524.同理可求得2010年、2011年和2012年男婴出生的频率分别约为0.521、0.512、0.513.(2)由以上计算可知,各年男婴出生的频率在0.510.53之间,所以该市男婴出生的概率约为0.52.题型三互斥事件、对
13、立事件的概率例3某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率思维启迪:明确事件的特征、分析事件间的关系,根据互斥事件或对立事件求解解(1)P(A),P(B),P(C).故事件A,B,C的概率分别为,.(2)1张奖券中奖包含中特等奖、一等奖、二等奖设“1张奖券中奖”这个事件为M,则MABC.A、B、C两两互斥,P(M)P(ABC)P(A)P(B)P(
14、C).故1张奖券的中奖概率为.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,P(N)1P(AB)1.故1张奖券不中特等奖且不中一等奖的概率为.探究提高(1)解决此类问题,首先应结合互斥事件和对立事件的定义分析出是不是互斥事件或对立事件,再选择概率公式进行计算(2)求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算;二是间接求法,先求此事件的对立事件的概率,再用公式P(A)1P()计算某医院一天派出医生下乡医疗,派出医生人数及其概率如下:医生人数012345
15、人及以上概率0.10.16xy0.2z(1)若派出医生不超过2人的概率为0.56,求x的值;(2)若派出医生最多4人的概率为0.96,最少3人的概率为0.44,求y、z的值解(1)由派出医生不超过2人的概率为0.56,得010.16x0.56,x0.3.(2)由派出医生最多4人的概率为0.96,得096z1,z0.04.由派出医生最少3人的概率为0.44,得y0.20.040.44,y0.440.20.040.2.高考中的随机事件问题典例:(12分)(2011·陕西)如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:所用时间(分钟
16、)10202030304040505060选择L1的人数612181212选择L2的人数0416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径考点分析本题考查了随机事件的频率、概率的含义及计算,考查了实际应用能力解题策略(1)读懂所给表格,确定不能赶到火车站的人数所在的区间,用相应的频率作为所求概率的估计值;(2)根据频率的计算公式计算;(3)计算选择不同的路径,在允许的时间内赶往火车
17、站的概率,通过比较概率的大小确定选择的最佳路径规范解答解(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有121216444(人),用频率估计相应的概率为0.44.3分(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为所用时间(分钟)10202030304040505060L1的频率0.10.20.30.20.2L2的频率00.10.40.40.16分(3)设A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站由(2)知P(A1)0.10.20.30.6,P(A2)0.10.40.5,10分P(A
18、1)P(A2),甲应选择L1.同理,P(B1)0.10.20.30.20.8,P(B2)0.10.40.40.9,P(B1)P(B2),乙应选择L2.12分解后反思(1)在求解随机事件问题时,要注意频率、概率的区别(2)对复杂事件概率的计算,可以先把事件转化为几个互斥事件的和方法与技巧1 对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A)2 从集合角度理解互斥和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为空集,事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的
19、结果组成的集合的补集失误与防范1 正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件2 需准确理解题意,特别留心“至多”,“至少”,“不少于”等语句的含义A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1 若在同等条件下进行n次重复试验得到某个事件A发生的频率f(n),则随着n的逐渐增加,有 ()Af(n)与某个常数相等Bf(n)与某个常数的差逐渐减小Cf(n)与某个常数差的绝对值逐渐减小Df(n)在某个常数附近摆动并趋于稳定答案D解析随着n的增大,频率f(n)会在概率附近摆
20、动并趋于稳定,这也是频率与概率的关系2 一个均匀的正方体玩具的各个面上分别标以数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()AA与B是互斥而非对立事件BA与B是对立事件CB与C是互斥而非对立事件DB与C是对立事件答案D解析根据互斥与对立的意义作答,AB出现点数1或3,事件A,B不互斥更不对立;BC,BC(为基本事件的集合),故事件B,C是对立事件3 从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在30,40克的概率为0.5,那么重量不小于30克的概率为
21、 ()A0.3 B0.5 C0.8 D0.7答案D解析由互斥事件概率加法公式知:重量在(40,)的概率为10.30.50.2,0.50.20.7,重量不小于30克的概率为0.7.4 袋中装有3个白球,4个黑球,从中任取3个球,则恰有1个白球和全是白球;至少有1个白球和全是黑球;至少有1个白球和至少有2个白球;至少有1个白球和至少有1个黑球在上述事件中,是对立事件的为()A B C D答案B解析因为至少有1个白球和全是黑球不可能同时发生,且必有一个发生,属于对立事件二、填空题(每小题5分,共15分)5 口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率为0.42,摸出白球的
22、概率为0.28,若红球有21个,则黑球有_个答案15解析10.420.280.30,21÷0.4250,50×0.3015.6 非空集合A、B满足AB,在此条件下给出以下四个命题:任取xA,则xB是必然事件;若xD/A,则xB是不可能事件;任取xB,则xA是随机事件;若xD/B,则xD/A是必然事件上述命题中正确命题的序号是_答案解析由AB可知存在x0B而x0D/A,所以,“若xD/A,则xB是不可能事件”是假命题;命题都是真命题7 已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8、0.12、0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两
23、次的概率分别为_,_.答案0.970.03解析断头不超过两次的概率P10.80.120.050.97.于是,断头超过两次的概率P21P110.970.03.三、解答题(共22分)8 (10分)袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,黑球或黄球的概率是,绿球或黄球的概率也是.求从中任取一球,得到黑球、黄球和绿球的概率分别是多少?解从袋中任取一球,记事件“得到红球”“得到黑球”“得到黄球”“得到绿球”分别为A,B,C,D,则事件A,B,C,D彼此互斥,所以有P(BC)P(B)P(C),P(DC)P(D)P(C),P(BCD)P(B)P(C)P(D)1P(A)
24、1,解得P(B),P(C),P(D).故从中任取一球,得到黑球、黄球和绿球的概率分别是,.9 (12分)我国已经正式加入WTO,包括汽车在内的进口商品将最多把关税全部降低到世贸组织所要求的水平,其中有21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年达到要求,其余的进口商品将在3年或3年内达到要求,求进口汽车在不超过4年的时间内关税达到要求的概率解方法一设“进口汽车恰好4年关税达到要求”为事件A,“不到4年达到要求”为事件B,则“进口汽车不超过4年的时间内关税达到要求”就是事件AB,显然A与B是互斥事件,所以P(AB)P(A)P(B)18%(121%18%)79%.方法二设“进口汽
25、车在不超过4年的时间内关税达到要求”为事件M,则为“进口汽车5年关税达到要求”,所以P(M)1P()121%79%.B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1 甲:A1、A2是互斥事件;乙:A1、A2是对立事件那么()A甲是乙的充分但不必要条件B甲是乙的必要但不充分条件C甲是乙的充要条件D甲既不是乙的充分条件,也不是乙的必要条件答案B解析根据互斥事件和对立事件的概念可知互斥事件不一定是对立事件,对立事件一定是互斥事件2 已知甲、乙两人下棋,和棋的概率为,乙胜的概率为,则甲胜的概率和甲不输的概率分别为 ()A., B., C., D.,答案C解析“甲胜”
26、是“和棋或乙胜”的对立事件,所以“甲胜”的概率为1.设“甲不输”为事件A,可看做是“甲胜”与“和棋”这两个互斥事件的和事件,所以P(A).(或设“甲不输”为事件A,可看做是“乙胜”的对立事件,所以P(A)1)3 在一次随机试验中,彼此互斥的事件A、B、C、D的概率分别是0.2、0.2、0.3、0.3,则下列说法正确的是 ()AAB与C是互斥事件,也是对立事件BBC与D是互斥事件,也是对立事件CAC与BD是互斥事件,但不是对立事件DA与BCD是互斥事件,也是对立事件答案D解析由于A,B,C,D彼此互斥,且ABCD是一个必然事件,故其事件的关系可由如图所示的Venn图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件故选D.二、填空题(每小题5分,共15分)4. 某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年非线性接点探测器项目投资价值分析报告
- 2024至2030年计算机整机项目投资价值分析报告
- 2024至2030年组合式货柜项目投资价值分析报告
- 2024至2030年硬脊膜外麻醉穿刺包项目投资价值分析报告
- 2024至2030年整体直埋式化粪池项目投资价值分析报告
- 2024至2030年开胸锯项目投资价值分析报告
- 2024至2030年压延辅机项目投资价值分析报告
- 2024至2030年三频信号连接线项目投资价值分析报告
- 2024年鞋用原料项目可行性研究报告
- 青少年婚姻观教育三年方案
- 消防车事故培训课件模板
- 【城市轨道交通运营安全管理研究5300字】
- 2024年中核汇能有限公司招聘笔试参考题库含答案解析
- 上海市2024届高三7月模拟预测历史试题(等级考)(解析版)
- 肺炎护理查房课件
- 北京地区成人本科学士学位英语统一考试应试指南
- 部编《道德与法治》二年级上册教材解析及教学建议
- 民俗学-人生礼仪民俗(诞生成年)
- 餐饮服务挂靠合同
- 消防工程质量保修协议
- 地貌与公路工程-山岭地貌(工程地质课件)
评论
0/150
提交评论