2016届中考数学一轮复习集训:题型专项十-圆的有关计算与证明(人教版含答案)(云南专用)_第1页
2016届中考数学一轮复习集训:题型专项十-圆的有关计算与证明(人教版含答案)(云南专用)_第2页
2016届中考数学一轮复习集训:题型专项十-圆的有关计算与证明(人教版含答案)(云南专用)_第3页
2016届中考数学一轮复习集训:题型专项十-圆的有关计算与证明(人教版含答案)(云南专用)_第4页
2016届中考数学一轮复习集训:题型专项十-圆的有关计算与证明(人教版含答案)(云南专用)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、圆的有关计算与证明圆的有关计算与证明是中考的必考内容之一,占有较大的比重,通常结合三角形、四边形等知识综合考查,以计算题、证明题的形式出现,解答此类问题要熟练掌握圆的基本性质,特别是切线的性质和判定,利用圆的性质求角度或者计算阴影部分面积(2015昆明西山区二模)如图,CE是O的直径,AC为O的切线,D为O上的一点,A2DCE,延长AD交CE的延长线于点B,连接CD,若BEOE2.(1)求证:AD为O的切线;(2)求图中阴影部分的面积(结果保留)【思路点拨】(1)要证AD为O的切线,由点D在O上可知,只需连接OD,证明ODAD.由OCOD得DOB2DCEA.由AC为O的切线知AB90,从而DO

2、BB90,ODAD即可得证;(2)S阴SODBS扇形ODE.代入相关数据即可求出【解答】(1)证明:连接OD,如图OCOD,DOB2DCE.又A2DCE,DOBA.AC为O的切线,ACOC,AB90.DOBB90.ODB90,即ODAB.OD为O的半径,AD为O的切线(2)在RtODB中,ODOE,OEBE.sinB,B30,DOB60.BDOBsin6042,SODBODBD222.S扇形ODE.S阴SODBS扇形ODE2.证明一条直线是圆的切线的常见方法有两种:(1)当直线和圆有一公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“作半径,证垂直”;(2)当直线和圆的公

3、共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,证半径”类型1与切线有关的计算与证明1(2015昆明西山区一模)已知AB是O的直径,AC为弦,且平分BAD,ADCD,垂足为D,求证:(1)CD是O的切线;(2)延长AB、DC交于点F,BFC30,O半径为3 cm,求AD的长2(2015昆明二模)已知:如图所示,四边形ABCD为平行四边形,以CD为直径作O,O与边BC相交于F,DE与边AB相交于E,EDFA,且AE3EB.(1)求证:DE是O的切线(2)若BC8,CD4,求ABCD的高DF的长度3(2015昆明盘龙区一模)如图,在ABC中,ABC90,以AB为直

4、径的O与AC边交于点D,过点D的直线交BC边于点E,BDEA.(1)判断直线DE与O的位置关系,并说明理由;(2)若O的半径R5,cosA,求线段CD的长4(2015衡阳)如图,AB是O的直径,点C、D为半圆O的三等分点,过点C作CEAD,交AD的延长线于点E.(1)求证:CE为O的切线;(2)判断四边形AOCD是否为菱形?并说明理由5(2015昆明官渡区二模)如图,已知AB为O的直径,ACAB于点A,BC与O相交于点D,在AC上取一点E,使得EDEA.(1)求证:ED是O的切线;(2)若OA3 cm,AE4 cm,求BC的长度(2013曲靖)如图,O的直径AB10,C,D是圆上的两点,且.设

5、过点D的切线ED交AC的延长线于点F,连接OC交AD于点G.(1)求证:DFAF;(2)求OG的长7(2015黔西南)如图所示,点O在APB的平分线上,O与PA相切于点C.(1)求证:直线PB与O相切;(2)PO的延长线与O交于点E,若O的半径为3,PC4.求弦CE的长8(2015北京)如图,AB是O的直径,过点B作O的切线BM,弦CDBM,交AB于点F,且DADC,连接AC,延长AD交BM于点E.(1)求证:ACD是等边三角形;(2)连接OE,若DE2,求OE的长9(2015常德)已知如图,以RtABC的AC边为直径作O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,

6、连接EF.(1)求证:EF是O的切线;(2)若O的半径为3,EAC60,求AD的长10(2015东营)已知,在ABC中,ABC90,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.(1)求证:ACADABAE;(2)如果BD是O的切线,D是切点,E是OB的中点,当BC2时,求AC的长11(2015临沂)如图,点O为RtABC斜边AB上的一点,以OA为半径的O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分BAC;(2)若BAC60,OA2,求阴影部分的面积(结果保留)类型2与圆的性质有关的计算与证明1(2015无锡)已知:如图,AB为O的直径,点C、D在O上,

7、且BC6 cm,AC8 cm,ABD45.(1)求BD的长;(2)求图中阴影部分的面积2(2015安徽)在O中,直径AB6,BC是弦,ABC30,点P在BC上,点Q在O上,且OPPQ.(1)如图1,当PQAB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值3(2015滨州)如图,O的直径AB的长为10,弦AC的长为5,ACB的平分线交O于点D.求弧BC的长;(2)求弦BD的长4(2015台州)如图,四边形ABCD内接于O,点E在对角线AC上,ECBCDC.(1)若CBD39,求BAD的度数;(2)求证:12.参考答案 1.(1)证明:连接OC.AC平分BAD,CAOCAD

8、.ADCD,CADACD90.CAOACD90.又OAOC,CAOOCA.OCAACD90,即OCD90,OCCD.又OC为O的半径,CD是O的切线(2)在RtOCF中,OC3 cm,BFC30,OF2OC6 cm.AFOFOA639(cm)在RtAFD中,F30,ADAF94.5(cm) 2.(1)证明:四边形ABCD为平行四边形,AC.EDFA,EDFC.CD为O的直径,DFC90,FDCC90.EDFFDC90,即EDC90,DEOD.OD为O的半径,DE是O的切线(2)四边形ABCD为平行四边形,ADBC.DFBC,DFAD.ADEEDF90.ADEFDC.AC,ADECDF.ABCD

9、4,AE3EB,AEAB43.CF.在RtCDF中,由勾股定理得DF. 3.(1)直线DE与O相切,理由如下:连接OD.AB为O的直径,ADB90,AABD90.OBOD,ABDODB.BDEA,BDEODB90,即ODE90.ODDE.又点D在O上,直线DE与O相切(2)在RtABC中,cosA,AC.在RtABD中,cosA,AD8.CDACAD8 4.(1)证明:连接OD.点C、D为半圆O的三等分点,BOCCODBOD.又BADBOD,BOCBAD.AEOC.ADEC,OCEC.CE为O的切线(2)四边形AOCD是菱形理由如下:点C、D为半圆O的三等分点,AODCOD60.又OAODOC

10、,AOD和COD都是等边三角形OAADDCOCOD.四边形AOCD是菱形 5.(1)证明:连接OD.EDEA,EDAEAD.ODOA,ODAOAD.ACAB,OADEADBAC90,ODAEDA90,即ODE90,ODED.又OD为O的半径,ED是O的切线(2)EA、ED均为O的切线,EOAD.BADAOE90.AB为O的直径,ADB90.BADABD90.AOEABD.OEBC.又O为AB的中点,OE为BAC的中位线BC2OE210(cm) 6.(1)证明:连接OD,BD. ,CADDAB30,ABD60.又OAOD,ODADAB30.ODAFAD.ODAF.又DE是O的切线,ODDF.DF

11、AF.(2)AB10,AO5. ,OGAD.在RtAOG中,GAO30,OGAO. 7.(1)证明:过点O作ODPB,连接OC.AP与O相切,OCAP.又OP平分APB,ODOC.PB是O的切线(2)过C作CFPE于点F.在RtOCP中,OP5.SOCPOCCPOPCF,CF.在RtCOF中,OF.FE3.在RtCFE中,CE. 8.(1)证明:BM是O的切线,AB为O的直径,ABBM.BMCD,ABCD.ADAC.DADC,ADCDAC.ACD为等边三角形(2)ACD为等边三角形,ABCD.DAB30.连接BD,BDAD,EBDDAB30.DE2,BE4,BD2,AB4,OB2.在RtOBE

12、中,OE2. 9.(1)证明:连接FO.AC是O的直径,CEAE.点F为BC的中点,FCFE.OEOC,OFOF,EFOCFO(SSS)OEFOCF.在RtABC中,ACB90,FEO90,即OEEF.又点E在圆上,FE为O的切线(2)O的半径为3,AOCOEO3,AC6.又EAC60,EOA60.CODEOA60.在RtOCD中,COD60,OC3.CDOC3.在RtACD中,AD3.10.(1)证明:连接DE.AE是直径,ADE90.又ABC90,ADEABC.又AA,ADEABC.,即ACADABAE.(2)连接OD.BD是O的切线,ODBD.点E是OB的中点,在RtOBD中,OEBEO

13、D,即OB2OD,OBD30.同理BAC30.在RtABC中,AC2BC224.11.(1)证明:连接OD.BC是O的切线,D为切点,ODBC.又ACBC,ODAC,ADOCAD.又ODOA,ADOOAD,CADOAD,即AD平分BAC.(2)连接OE,ED.BAC60,OEOA,OAE为等边三角形AOE60.ADE30.又OADBAC30,ADEOAD,EDAO,SAEDSOED.阴影部分的面积S扇形ODE.类型2与圆的性质有关的计算与证明 1(1)连接OD.AB为O的直径,ACB90.BC6 cm,AC8 cm,AB10 cm.OB5 cm.ODOB,ODBABD45.BOD90.BD5 cm.(2)S阴影S扇形SOBD5255(cm2) 2.(1)连接OQ,PQAB,OPPQ,OPAB.在RtOBP中,tanB,OP3tan30,在RtOPQ中,OP,OQ3,PQ.(2)连接OQ,在RtOPQ中,PQ,当OP的长最小时,PQ的长最大,此时OPBC,则OPOB,PQ长的最大值为. 3.(1)连接OC.AB为O的直径,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论