八年级数学上册5.2求解二元一次方程组练习题北师大版_第1页
八年级数学上册5.2求解二元一次方程组练习题北师大版_第2页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1求解二元一次方程班级:_姓名:_得分:_.解下列方程组(每小题 8 分,80 分)(2)产L3x+2y=12(3)* 4 3_33 (x - 4)二4 (y+2)”誓)3K-2 (2y+l)二4(5)(6)3x - 4y=2二22xl 3(1)x+y=l2(3 (s_t) - 2 (s+t) =10(3 (s_t) +2 (s+t) =263 (x+y) +2 (x-3y) =15|+4尸14(io)* x - 3 _ y - 3_L43 =122y=3乜3、解答题(每小题 10 分,20 分)1 求适合 的 x, y 的值.23Z 二二 y-2.已知关于 x, y 的二元一次方程 y=kx

2、+b 的解有*和I产4 I尸2(1 )求 k,b 的值.(2 )当 x=2 时,y 的值.(3 )当 x 为何值时,y=3 ?4参考答案 一.解下列方程组(1 -得,-X=-2,解得 x=2,把 x=2 代入得,2+y=1, 解得 y= - 1.(x=2故原方程组的解为-I尸(2)X3-X2得,-13y= - 39,解得,y=3,把 y=3 代入得,2x- 3X3=- 5,解得 x=2.(x=2故原方程组的解为I尸3r3x+4y=16(3) 原方程组可化为*人恥,ox - 4y=20+得,6x=36,x=6,-得,8y= - 4,y=-寺 所以原方程组的解为尸-L-6x+2y= - 9(4)原

3、方程组可化为:3x- 4y=64X2+得,x=44把 x=,代入得,3X匚-4y=6,5所以原方程组的解为,尸- 丄I 2【解析】利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:1相同未知数的系数相同或互为相反数时,宜用加减法;2其中一个未知数的系数为 1 时,宜用代入法.X4-X3,得7x=42 ,解得 x=6 把 x=6 代入,得(1)原方程组化为”2x+3y=134s - 3y=5,(6)解:+得: x=3.6x=18,代入得:7先所以原方程组的解为-7.3(5)解:原方程组可化为f4x- 3y=12(3工-4尸2y=4.f x=6尸4所以方程组的解为6(10)解:原方程

4、变形为:+4y=L43z-4y=-2,f3 (s-t) -2 (s+t) =10(3 (s- t) +2 (s+t) -26,得 s+t=4 ,+,得 s - t=6 ,s+t=4-,s=5t=- 1即*所以方程组的解为*Ls=5 t=-1 x - 2y=3(8)原方程组可化为*1 2x - 5y=7X2-得:y= - 1,将 y= - 1 代入得:x=1 .(X=1方程组的解为*1;y= 1(9)解:原方程组可化为r5x+3y=15、瓷-3尸15,+,得 10 x=30,x=3,代入, 得 15+3y=15, y=0.f梵=3则原方程组的解为1尸07两个方程相加,得4x=12 ,x=3.把

5、x=3 代入第一个方程,得4y=11 ,11y= -.解之得*H.二.解答题1 .求适合的 x, y 的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程的值,继而求出 x 的值.解答:(竺二丝1解:由题意得:”$,洋(2)由(1)X2得:3x-2y=2(3),由(2)X3得:6x+y=3(4),(3)X2得:6x-4y=4(5),r3x - 2y=26x+y=3,然后在用加减消元法消去未知数x,8(5)-( 4)得:y=-,Q把 y 的值代入(3)得:x=.9点评:本题考查了二兀一次方程组的解法,主要运用了加减消兀法和代入法.Ix=3 x=2.已知关于 x, y 的二元一次方程 y=kx+b 的解有和|尸41尸2(1 )求 k, b 的值.(2 )当 x=2 时,y 的值.(3)当 x 为何值时,y=3?解二元一次方程组.计算题.4=3k+b(1)将两组 x, y 的值代入方程得出关于 k、b 的二元一次方程组* c再运用加减消元法求库-k+b的值.(2)将(1)中的 k、b 代入,再把 x=2 代入化简即可得出 y 的值.(3) 将(1)中的 k、b 和 y=3 代入方程化简即可得出 x 的值.解:(4=3k+b (门依题意得:h 出-得:2=4k,所以 k=.,10(2)由y=5所以 b=,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论