八年级数学上册14.2三角形全等的判定教案沪科版_第1页
八年级数学上册14.2三角形全等的判定教案沪科版_第2页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、114. 2 三角形全等的判定第 1 1 课时 运用“边角边”证三角形全等教学目标1 1使学生掌握SAS的内容,会运用SAS来识别两个三角形全等.2 2通过全等三角形的识别的学习,使学生初步认识事物之间的因果关系与相互制约关 系,学习分析事物本质的方法.3 3.经历如何总结出全等三角形识别方法,体会如何探讨、实践、总结,培养学生的合 作能力.重点难点重点三角形全等的识别:SAS难点对全等三角形的识别的理解和运用.教学过程一、创设情境,导入新课1 1什么叫全等图形?什么叫做全等三角形?(能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.)2 2两个三角形满足什么条件就能全

2、等呢?如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?一一这就是本节课我们要探讨的课题.二、合作交流,探究新知如果已知一个三角形的两边及一角,那么有几种可能的情况呢?(应该有两种情况:一种是角夹在两条边的中间,形成两边夹一角;另一情况是角不夹 在两边的中间,形成两边一对角.)每一种情况下得到的三角形都全等吗?做一做:(1 1)如果“两边及一角”条件中的角是两边的夹角,比如三角形两条边分别为3 3 cmcm 和 4 4 cm,cm,它们的夹角为 5050,你能画出这个三角形吗?你画的与同伴画的一定全等吗?换两条线段和一个角试试,你发现了什么?同学们各抒己见后总结: 发现对于已知

3、的两条线段和一个角,以该角为夹角,所画的三角形都是全等的.这就是判别三角形全等的另外一种简便的方法:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.简记为“边角边”或“SAS.(2 2)如果“两边及一角”条件中的角是其中一边的对角,比如两条边分别为4 4 cmcm 和 4.54.5cm,cm,长度为 4 4 cmcm 的边所对的角为 6060,情况会怎样呢?请画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?(两边及其中一边的对角对应相等,两个三角形不一定全等.)2三、运用新知,深化理解例 1 1 如图,D在AB上,E在AC上,AB= AC AD=

4、AE求证:/B=ZC.A分析:本题考查了全等三角形的性质与判定,解题的关键是熟知判定一般的三角形全等的方法利用“SAS证明ABEAACD再利用全等三角形的对应角相等即可.rAB= AC证明:在厶ABEDAACD中, /A=Z代AE= ADABEAACDSAS,./B=ZC【归纳总结】解决此类题型常用的方法是: 直接应用全等三角形的判定和性质证明即可, 注意在证明三角形全等时隐含的条件,如公共边、公共角、对顶角等.例 2 2 如图,已知A,B两点被一个池塘隔开,无法直接测量,但两点可以到达,现给出一种方案:找两点C D,使AD/ BC且AD= BC量出CD的长即得AB的长.请说明理由.分析: 由

5、平行线的性质得到/DAC=/BCA然后通过证ADCACBASA$得到AB= CD解:AB= CD理由如下:如图,AD/ BC/DAC=/BCA在ADCfACBA中,AD= CB/DAC=ZBCAAC= CAADC CBASAS,AB= CD【归纳总结】解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.阅读教材 P99P99100100 例 1 1,例 2 2,指导学生分析例题,并从中归纳出证明的思路、方法。四、课堂练习,巩固提高1 1.教材 P100P100 练习.2 2 请同学们完成探究在线高效课堂“随堂演练”内容.五、反思小结,梳理新知学生谈收

6、获、体会、疑惑后,进一步总结本节课学习了三角形全等的识别的一种方法( (SAS,而两边及其中一边的对角对应相等的两个三角形不一定全等,注意观察图形的特征,找出是否具备满足两个三角形全等的条件.六、布置作业31.1.请同学们完成探究在线高效课堂“课时作业”内容.2 2 .教材 P111P111112112 习题 14.214.2 第 1 14 4 题.第 2 2 课时 运用“角边角”证三角形全等教学目标1 1 使学生理解ASA的内容,能运用ASA全等识别法来识别三角形全等,进而说明线段 或角相等.2 2 通过画图、实验、发现、应用的过程教学,树立学生知识源于实践用于实践的观念, 使学生体会探索发

7、现问题的过程.重点难点重点利用三角形全等的识别法,间接说明角相等或线段相等. 难点三角形全等的识别法ASA及应用;教学过程一、创设情景,导入新课1 1 什么叫做全等三角形, 如何识别两个三角形全等?( (能够完全重合的两个三角形叫做 全等三角形识别两个三角形全等的方法有:SAS.2.2.叙述SAS的内容.3 3请问到本节课为止,我们探讨两个三角形全等满足三个条件的哪几种情况,情况如 何呢?还有哪些情况还没有探讨呢?( (如果两个三角形的两个角及一条边分别对应相等,这两个三角形一定全等吗?) )本节课我们探讨两个三角形的两个角及其夹边分别对应相等,这两个三角形是否全等的课题.二、合作交流,探究新

8、知请同学们动手做一个实验:同桌两位同学为一组. 共同商定画出任意一条线段AB与两个角/A,ZB( ( /A+ZB180180 ) ) (2)(2) 两位同学各自在硬纸板上画线段A B的长等于商定的线段AB的长,在A B的 同旁,画ZB A C等于商定的ZA,画ZA B C等于商定的ZB,设A C与B C相交于C,便得A B C.(3)(3) 用剪刀各自剪出厶A BCC,将同桌同学剪出的两个三角形重叠在一起发现了什 么?其他各桌的同学是否也有同样的结论呢?同学们各抒己见后, 总结:对于已知两个角和一条线段,以该线段为夹边,所画的三角形都是全等的.由此得到另一个识别全等三角形的简便方法:如果两个三

9、角形的两个角及其夹边分别对应相等,那么这两个三角形全等简记为“角边角”或“ASA三、运用新知,深化理解例 1 1 如图所示,点E在厶ABC外部,点D在BC边上,DE交AC于F,若ZBAD=ZCAEZE=ZC,AE= AC,则( () )Efi4ABS AFEB.AAFEAADCC.AFEADFCD.AABCAADE分析:/BAD=ZCAE/BADbZDAF=ZCAEFZDAF即/BAC=ZDAE: /E=ZC, AE=AC/BAC=/DAEABS ADEASA.【归纳总结】在“ASA中,包含“边”和“角”两种元素,是两角夹一边而不是两角 及一角的对边对应相等,应用时要注意区分;在“ASA中,“

10、边”必须是“两角的夹边”.例 2 2 某家装公司的员工在安装玻璃时,不小心将一块三角形玻璃打碎要求他只带其中一块碎片到玻璃店去,就能配一块与原来一样的回来.请根据图形回答问题: 碎片如图,他应该带 _ 去,原因是 _ ;(2)(2)碎片如图,他应该带 _ 去,原因是 _ .分析: 带B去,原因是两角及其夹边对应相等的两个三角形全等( (ASA;(2)(2)带A去,原因是两边及其夹角对应相等的两个三角形全等( (SA$.【归纳总结】分别根据三角形全等的判定方法解答即可.本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.阅读教材 P101P101102102 例 3 3,例 4

11、 4,总结出证明方法,形成证明模式.四、课堂练习,巩固提高1 1.教材 P102P102103103 练习.2 2请同学们完成探究在线高效课堂“随堂演练”内容.五、反思小结,梳理新知用采访的形式访问一些同学,本节课学到了什么知识,对这些知识有什么体会?对本节 课的知识存在着哪些疑问?六、布置作业1 1.请同学们完成探究在线高效课堂“课时作业”内容.2 2 .教材 P112P112 习题 14.214.2 第 5 5, 7 7 题.第 3 3 课时运用“边边边”证三角形全等教学目标1 1 使学生理解“边边边”基本事实的内容,能运用“边边边”基本事实证明三角形全 等,为证明线段相等或角相等创造条件

12、.2 2继续培养学生画图、实验,发现新知识的能力.重点难点重点灵活运用SSS识别两个三角形是否全等.图图5难点让学生掌握“边边边”基本事实的内容和运用基本事实的自觉性.教学过程一、创设情境,导入新课请问同学,老师在黑板上画的ABCWA B C全等吗?你是如何识别的?( (同学们各抒己见,如:动手将纸剪下一个三角形,剪下叠放到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等.) )上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等.满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究.二、合作交

13、流,探究新知1 1 问题如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段a、b、c,分别为 4 4 cmcm、3 3 cmcm、4.84.8 cm,cm,你能画出这个三角形吗? 先请几位同学说说画图思路后, 教师指导,同学们动手画,教师演示并叙述书写出步骤. 步骤:画一线段AB使它的长度等于c(4.8(4.8 cm)cm).(2)(2) 以点A为圆心,以线段b(3(3 cm)cm)的长为半径画圆弧;以点B为圆心,以线段a(4(4 cm)cm)的长为半径画圆弧;两弧交于点C(3)(3) 连接AC BCABC即为所求.把你画的三角形与其他同学的图形叠合在一起,你们会发

14、现什么?换三条线段,再试试看,是否有同样的结论?请你结合画图、对比,说说你发现了什么?同学们各抒己见,教师总结:给定三条线段, 如果它们能组成三角形, 那么所画的三角 形都是全等的这样我们就得到识别三角形全等的一种简便的方法:如果两个三角形的三条边分别对应相等,那么这两个三角形全等简记为“边边边”或“SSS.2 2问题 2 2 你能用“SSS这个三角形全等的识别法解释三角形具有稳定性吗?( (只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了.) )三、运用新知,深化理解例 1 1 如图,已知AB= AC BA CD试说明/ B=B=ZC的理由.分析:连接AD,利用“SSS得到AB

15、D与ACD全等,利用全等三角形对应角相等即 可得证.6解:连接AD,在厶ABDAACD中,AB= AC?AD= AD ABD ACQSSS,BD= CD:丄B=ZC【归纳总结】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.例 2 2 见教材 P104P104 例 5.5.四、 课堂练习,巩固提高1.1.教材 P105P105 练习.2 2请同学们完成探究在线高效课堂“随堂演练”内容.五、反思小结,梳理新知本节课探讨出可用“SSS来判定两个三角形全等, 并能灵活运用“SSS来判定三角形 全等.三个角对应相等的两个三角形不一定会全等.六、布置作业1 1请同学们完成

16、探究在线高效课堂“课时作业”内容.2.2.教材 P112P112113113 习题 14.214.2 第 8 8, 1111 题.第 4 4 课时 运用“角角边”证三角形全等教学目标1 1使学生理解AAS的内容,能运用AAS全等识别法来识别三角形全等,进而说明线段 或角相等.2 2通过画图、实验、发现、应用的过程教学,让学生树立知识源于实践、用于实践的观念体会探索发现问题的过程经历自己探索出AAS的三角形全等识别及其应用的过程.重点难点重点利用三角形全等的识别法,间接说明角相等或线段相等. 难点三角形全等的识别法AAS及应用.一、创设情境,导入新课1 1 什么叫做全等三角形,如何识别两个三角形

17、全等?(能够完全重合的两个三角形叫做全等三角形.识别两个三角形全等的方法有:SAS ASASSS2 2.叙述SAS ASA SSS的内容.3 3如果两个三角形的两角分别相等且其中一组等角的对边也相等,这两个三角形是否全等?本节课我们进行探讨.二、合作交流,探究新知思考:如图,如果两个三角形有两个角及其中一个角的对边分别对应相等,那么这两个三角形是否一定全等?7动手画一画:比如/A= 4545,/C= 6060,AB=3 3 cmcm,你能画这个三角形吗?你画的三角形与同伴画的一定全等吗?现在两组同学按如果 4545角所对的边为 3 3 cmcm 画,另两组同学换两个角和一条线段,试 试看,你们

18、得出什么结论?同学们各抒己见后, 总结:对于已知两个角和一条线段,以该线段为对边,所画的三角形都是全等的.由此得到另一个识别全等三角形的简便方法:两个角分别相等且其中一组等角的对边相等的两个三角形全等简记为“角角边”或“AAS.问题:你能说说ASA与AAS这两种全等识别法间的关系吗? (AAS识别法可由ASA识别 法推导出来,如上图中,因为/A=/D,/C=/F,由于/ B=B= 180180/A-/C,/E= 180180 -/F/D,所以/B=/E,于是ABCWDEFM备ASA证全等的条件.)三、运用新知,深化理解例 1 1 如图, 在厶ABC中 ,ADL BC于点D, BEL AC于E

19、AD与BE交于F,若BF=AC求 证: ADHBDF分析:先证明/ADC=/BDF/DAC=/DBF再由BF=AC根据“AAS即可得出两三 角形全等.证明: ADLBC BEX AC/ADC=/BDF=/BEA=9090 . .v/AFE=/BFD/DAO/AE阡/AFE=180180 , /BDFF/BFDb/DBF=180180 , /DAC=/DBF在厶ADC和厶BDF/DAC=/DBF中,/ADC=/BDFADC BDFAASAC= BF,【归纳总结】在“AAS中,“边”是其中一个角的对边.例 2 2 已知:在厶ABC中,/BAC=9090 ,AB= AC直线m经过点A,BDL直线m

20、CE!直线m垂足分别为点D, E求证:BDAAAEC(2 2)DE= BM CE分析:(1 1)由垂直的关系可以得到一对直角相等,利用同角的余角相等得到一对角相等,8再由AB= AC利用“AAS即可得证;(2 2)由厶BDAAAEC可得BD= AE AD= EC根据DE=DA+ AE等量代换即可得证.证明:BDL m CEL m/ADB=ZCEA=9090 ,A/ABDFZBAD=9090 . .vABL AC /BAD+ /CAE= 9090 ,/ABD= /CAE在BDA和AEC中,v/ADB=ZCEA=9090,/ABD=ZCAEAB= AC BDA2AAECAAS;(2 2)BDA2A

21、AEC - BD= AE AD= CE - DE= DA AE= BM CE【归纳总结】利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.四、课堂练习,巩固提高1 1.教材 P107P107 练习.2 2请同学们完成探究在线高效课堂“随堂演练”内容.五、反思小结,梳理新知本节课学习了三角形全等的识别的另一种方法一一AAS即两个角分别相等且其中一组 等角的对边相等的两个三角形全等, 注意观察图形的特征,找出是否具备满足两个三角形全 等的条件.六、布置作业1 1请同学们完成探究在线高效课堂“课时作业”内容.2 2 .

22、教材 P112P112113113 习题 14.214.2 第 9 9 , 1212 题.第 5 5 课时 运用“斜边、直角边”证三角形全等教学目标1 1探索和了解直角三角形全等的条件:斜边、直角边定理. 2 2会运用斜边、直角边定理判定两个直角三角形全等.重点难点重点探究直角三角形全等的条件.难点灵活运用三角形全等的条件证明.教学过程一、创设情境,导入新课(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)(1) 你能帮他想个办法吗?9(2)(2) 如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的” 你相信他的结论吗?学生思考全等的判定方法.方法一:测量斜边和一个对应的锐角.( (AAS方法二:测量没被遮住的一条直角边和一个对应的锐角.( (ASA或AAS思考工作人员的方法是否正确.二、合作交流,探究新知已知线段a、c( (a AP= =BC(1)当P运动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论