北师大版七年级数学上册学习知识点及其关键习题集_第1页
北师大版七年级数学上册学习知识点及其关键习题集_第2页
北师大版七年级数学上册学习知识点及其关键习题集_第3页
北师大版七年级数学上册学习知识点及其关键习题集_第4页
北师大版七年级数学上册学习知识点及其关键习题集_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、*北师大版七年级数学上册知识点前言:七年级上知识点很简单,主要是衔接作用,很多知识点在六年级涉及过,现在是对六年级的加深与拓展。重点难点章节有三个:第二章有理数及其运算、第三章整式及其加减、第五章一元一次方程。第一章丰富的图形世界备注:本单元两个易错点:1 、图形的展开与折叠 2、“三视图”判断图形个数1、几何图形从实物中抽象由来的各种图形,包括立体图形和平面图形。立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体 图形。平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图 形。2、生活中的立体图形柱I-1-生活中的立体图形正方体)、五棱柱、(按名称分)1锥棱锥3、点、线、面

2、、体(1)几何图形的组成圆柱圆锥棱柱:三棱柱、四棱柱(长方体、点:线和线相交的地方是点,它是几何图形中最基本的图形 线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。(2)点动成线,线动成面,面动成体。4、常见的几何体及其特点长方体: 有8个顶点,12条棱,6个面,且各面都是长方形。(正方形是特殊的长方形),正方体是特殊的长方体。棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。圆柱:有上下两个底面和一个侧面(曲面) ,两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆

3、形和一个长方形 连成。圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。球:由一个面(曲面)围成的几何体。5、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。侧棱:相邻两个侧面的交线叫做侧棱。n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱; 2n个顶点。6、正方体的平面展开图:11种可能由现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、 等腰梯形、五边形、六边形、正六边形不可能由现:钝角三角形、直角三角形、直角梯形、正五边形、七边 形或更多边形其他几何体的截面形状:正方体:三角形、正方形、长方形、梯形、五边形、六

4、边形圆柱: 圆、长方形、(正方形)、圆锥: 圆、三角形、球: 圆8、三视图物体的三视图指主视图、俯视图、左视图。主视图:从正面看到的图,叫做主视图。左视图:从左面看到的图,叫做左视图。俯视图:从上面看到的图,叫做俯视图。第二章有理数及其运算备注:1*、数轴是新知识很多地方用到2*、去绝对值与绝对值的几何意义很重要,有些学生在去绝对值和利用绝对值几何意义做题时比较容易由错(去绝对值的主 要数学思想是“分情况讨论”这也是贯穿初高中的一个重要数学 思想)3*、有理数混合运算中去去括号变号很多同学容易在这块丢分。1、有理数的分类整数和分数统称为有理数。 因为有限小数和无限循环小数可以化为 分数,所以把

5、有限小数和无限循环小数都看作分数。叱有,理数整数有理数 零有限小数和无限循环小数或 有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是J I专在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等.相反数是成对由现的,不能单独存在,单独的一个数不能说 是相反数。3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)任何一个有理数都可以用*数轴上的一个点来表示。解题时要真正掌握数形结合的思想,并能灵活运用。4、倒数:如果a与b互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是1 和-1 。零没有倒数。5、绝

6、对值: 在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a| >0)o零的绝对值时它本身,也可看成它的相反数,左r|a|=a ,则 aA0;右 |a|=-a ,则 aW0。绝对值的有关性质对任意有理数a,都有间>0;若 |a|=0 ,则 a=0 ;若 |a|=|b| ,则 a=b 或 a= b;若 |a|二b(b>0),则 a=±b;若 |a| |b|=0 ,则 a=0 且 b=0;对任意有理数a,都有|a|=| - a|.6、有理数比较大小: 正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的

7、反而小。7、有理数的运算:( 1)五种运算: 加、减、乘、除、乘方多个数相乘, 积的符号由负因数的个数决定, 当负因数有奇数个时,积的符号为负; 当负因数有偶数个时, 积的符号为正。 只要有一个数为零,积就为零。有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。一个数同0相加,仍得这个数。互为相反数的两个数相加和为 0。有理数减法法则: 减去一个数,等于加上这个数的相反数!有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与0相乘,积仍为0。有理数除法法则

8、:两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何非0的数都得0。注意:0不能作除数。有理数的乘方:求n个相同因数a的积的运算叫做乘方。a2是重要的非负数,即 a2>0;若a2+|b|=0则a=0,b=0 ;据规律底数的小数点移动一位,平方数的小数点移动二位.注意:一个数可以看作是本身的一次方,如5=51;当底数是负数或分数时,要先用括号将底数括上,再在右上角写指 数。乘方的运算性质:正数的任何次事都是正数;负数的奇次哥是负数,负数的偶次哥是正数;任何数的偶数次哥都是非负数;(除0以外任何数的0次方都得1) 1的任何次事都得1, 0的任 何次嘉(除0次)都得0;-1的偶次累

9、得1; -1的奇次塞得-1 ;在运算过程中,首先要确定事的符号,然后再计算事的绝对值。(2)有理数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的(3)运算律加法交换律abba加法结合律(a b) c a (b c)乘法交换律ab ba乘法结合律(ab)c a(bc)乘法对加法的分配律a(b c) ab ac 变形公式ab ac a(b c)8、科学记数法一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(口=整数位数-1 )第三章整式及其加减备注:这章算是这册比较难的一个知识点。一是对单项式、多项式的理解,其次是对同类项的理解和计算。

10、容易由错的地方大多在化简计算,有几点:1、是化简计算过程中去括号变号。2、化简求值中“整体思想”的运用。3、化简计算中一个字母表示另个字母代入换算。知识点一、字母表示数1、字母可以表示任何数,用字母表示数的运算律和公式法则;加法交换律 a+ b = b+a加法结合律 a+b+c=a+ (b+c)乘法交换律 ab= ba乘法结合律( ab) c = a ( bc)乘法分配律 a (b+c) = ab+ac用字母表示计算公式:-*mn 5m长方形的周长2 (a+b),面积由 (a、b分别为长、宽)正方形的周长4a,面积a2 (a表示边长)长方体的体积 abc,表面积2ab+ 2bc+2ac (a、

11、b、c分别为长、宽、 高)(4正方体的体积a3,表面积6a2 (a表示棱长)(5圆的周长2兀r,面积兀J (r为半径)三角形的面积1 x ah (a表示底边长,h表示底边上的高)2、在同一问题中同一字母只能表示同一数量,不同的数量要用不 同的字母表示。3、用字母表示实际问题中某一数量时,字母的取值必须使这个问题有意义,并且符合实际。4、注意书写格式的规范:(1)表示数与字母或字母与字母相乘时乘号,乘号可以写成“ ”, 但通常省略不写;数字与数字相乘必须写乘号;(2)数和字母相乘时,数字应写在字母前面;(3)带分数与字母相乘时,应把带分数化成假分数;(4)除法运算写成分数形式 ,分数线具 “一

12、”号和“括号”的双 重作用。(5)在代数式的运算结果中,如有单位时,结果是积或商直接写单位;结果是和差加括号后再写单位。典型例题:例题1.有一大捆粗细均匀的钢筋,捆钢筋的总质量为 m千克,再从中截取现要确定其长度,先称由这5米长的钢筋,称由它的质)米5mD、(- -5)n量为n千克,那么这捆钢筋的总长度为(例题2.用代数式表示“2a与3的差”为()A . 2a3 B . 3-2a C . 2 (a-3)*门 D. 2图】3】(3-a)例题3.如图131,轴上点A所表示的是实数a,则到原点的距 离是()A 、a B . a C .土a D . |a|.一 111例题 4.已知 a=20 x+20

13、 , b= 20 x+19 , c=20 x+21 ,那么代数式 a +b +cabbc ac 的值为()A、4 B 、3 C 、2 D 、1练习:1、温度由tC下降3c后是 C.2、飞机每小时飞行 a千米,火车每小时行驶 b千米,飞机的速度是 火车速度的 倍.3、无论a取什么数,下列算式中有意义的是()A.、工 B. 1C. 1a 1 D.a 1a22a 14、全班同学排成长方形长队,每排的同学数为a,排数比每排同学数的3倍还多2,那么全班同学数为()A. a 3a 2 B. a(3a 2) C. a 3a 2 D. 3a(a 2)5、轮船在A、B两地间航行,水流速度为 m千米/时,船在静水

14、中的速度为n千米/时,则轮船逆流航行的速度为 千米/时6、甲、乙、丙三家超市为了促销一种定价均为x元的商品,甲超市连续两次降价20%,乙超市一次性降价 40%丙超市第一次降价 30% 第二次降价10%此时顾客要想购买这种商品最划算,应到的超市是( )(A)甲(B)乙(C)丙(D)乙或丙7、下列说法中:a一定是负数;|a|一定是正数;若abc 0, 则a、b、c三个有理数中负因数的个数是 0或2,其中正确的序号是 一 8、设三个连续整数的中间一个数是 n,则它们三个数的和是 9、设三个连续奇数的中间一个数是x,则它们三个数的和是 10、设n为自然数,则奇数表示为 -偶数表示为 能被5 整除的数为

15、 ;被4除余3的数为二、代数式1、代数式:用基本运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫代数式。如:n-2、0.8a、2n+500、abc、2ab+2bc +2ac (单独一个数或一个字母也是代数式)注意:代数式中除了含有数、字母和运算符号外,还可以有括号;代数式中不含有“=、半”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。代数式的书写格式:代数式中由现乘号,通常省略不写,如 vt ;数字与字母相乘时,数字应写在字母前面,如4a;带分数与字母相乘时

16、,应先把带分数化成假分数,如2,a应写作7 a ;33数字与数字相乘,一般仍用“X”号,即“X”号不省略;在代数式中由现除法运算时,一般写成分数的形式,如4+ (a-4 )应写作 工;注意:分数线具有“ 一 ”号和括号的双重作用。a 4在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如(a2 b2)平方米例:下列不是代数式的是()sA. 0B. C. x 1D. x 0.1y2t2、单项式:表示数与字母的积的形式的代数式叫单项式。单独一个数或一个字母也是单项式。其中的数字因数(连同符号)叫单项式的系数,所有的字母的指数的和叫单项式的次数。注意:1.单独

17、的一个数或一个字母也是单项式;2 .单独一个非零数的次数是 0;3 .书写时,当单项式的系数为1或-1时,这个“1”应省略不写,如-ab 的系数是-1 , ab的系数是1。4 .是数字,不是字母。例:ab2的系数是 ;如 x2的系数是 ;如 1 x2的 系数是;3、多项式:几个单项式的和叫多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。例:代数式5x y x2 x 1有 项,第二项的系数是,第三项的系数是,第四项的系数是4、单项式多项式统称为整式。整式是代数式的一部分,在代数式中 可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。练习:1、某商品售价为

18、a元,打八折后又降价 20元,则现价为 元2、橘子每千克a元,买10kg以上可享受九折优惠,则买 20千克应 付 元钱.3、如图,图1需4根火柴,图2需 根火柴,图3需 根火柴,图n需根火柴。(图1)(图2)(图n)4、温度由tC下降3c后是 C.5、飞机每小时飞行 a千米,火车每小时行驶b千米,飞机的速度是火车速度的 倍.6、无论a取什么数,下列算式中有意义的是()A. B. -C. -a 1 D.a 1a22a 17、全班同学排成长方形长队,每排的同学数为a,排数比每排同学数的3倍还多2,那么全班同学数为()A. a 3a 2 B. a(3a 2) C. a 3a 2 D. 3a(a 2)

19、 28、填空 U的系数为次数为:3a 2b2的次数为3 ; ab2的系数是 ; x2的系数是 ;1 x2的系数2是;代数式5x y x2 x 1有 项,第二项的系数是 第三项的系数是 ,第四项的系数是 9、下列不是代数式的是()A. 0B.三、合并同类项C. x 1D . x 0.1 y21、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同 类项。注意:同类项有两个条件:a.所含字母相同;b.相同字母的指数也 相同。同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。如:100a 和 200a, 240b 和 60b, -2ab 和 10ba*2、合并同类项法则:把同类项的系

20、数相加,字母和字母的指数不变。合并同类项法则:(1)写生代数式的每一项连同符号,在其中找由同类项的项;(2)合并同类项:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(3)不同种的同类项间,用“ +”号连接(4)没有同类项的项,连同前面的符号一起照抄如:合并同类项3x例4.直接写由下列各式的结果:(1 ) - - xy+ - xy=; ( 2 ) 7a2b+2a2b=; ( 3 )22-x-3x+2x= ;(4) x2y-1x2y-1x2y=;(5) 3xy2-7xy 2=. 3 例5.合并下列多项式中的同类项.y和5x2y,字母x、y及x、y的指数都不变,?只要将它们的系数 3

21、和5相力口,即3x2y+5x2y= (3+5) x2y=8x2y.3 .合并同类项的步骤:(1)准确的找由同类项(2)运用加法交换律,把同类项交换位置后结合在一起(3)利用法则,把同类项的系数相加,字母和字母的指数不变(4)写生合并后的结果4 .注意:(1)不是同类项不能合并(2) 求代数式的值时,如 果代数式中含有同类项,通常先合并同类项再代入数值进行计算.例1.判断下列各组中的两个项是不是同类项:(1) 2a2b 和-5a2b(2) 2m2 np 和-pm2n(3) 0 和-137例2.下列各组中:5x2y与xy;5*2丫与1丫*2; 555ax2与lyx2;83与x3;x2与x2 ;3x

22、2与x3x2 52与2 ,同类项有 (填序号)例3.如果Jxky与一1x2y是同类项,则k= , -xky+ ( - - x2y)3333二(1) 4x2y-8xy 2+7-4x2y+10xy2-4 ;(2) a2-2ab+b2+a2+2ab+b2.(3) 3x2 5x 6x2 12 c 2,2224 4) 6xy 2x 4x y 5yx x例 6.若 x 0, y 0 , 1 xy2 axy2 0 ,贝U a 练习:1、单项式2axb2与a3by是同类项,则x , y 2、下列各组中:5x2y与1xy;5x2 y与-yx2 ;5ax2与1yx2 ;555783与x3 ;x2与1x2;3x2与

23、x3x2与2,同类项有 2(填序号)3、合并同类项: 3x2 5x 6x2 1 6xy2 2x2 4x2y 5yx2 x24、若 x 0, y 0 , 1 xy2 axy2 0 ,贝U a 四、去括号法则1、根据去括号法则去括号:(1)括号前是“ +”号,把括号和前面的“ +”号去掉,括号里的各 项的符号都不改变。(2)括号前是”号,把括号和前面的”号去掉,括号里的 各项都要改变符号。2、根据去括号法则中乘法分配律的应用去括号:若括号前有因式,应先利用乘法分配律展开,同时注意去括号时符号的变化规律。3、多重括号的化简原则:(1)由里向外逐层去掉括号(2)由外向里逐层去掉括号汪息:1、添括号法则

24、添“十”号和括号,添到括号里的各项符号都不改变;添”号和 括号,添到括号里的各项符号都要改变。2、整式的运算:整式的加减法:(1)去括号;(2)合并同类项。例1、一个两位数,十位数字是 x,个位数字比十位数字 2倍少3,这个两位数是例2、去括号,合并同类项(1) 3 (2s 5) +6s(2)3x5x (1x4)(3 ) 6a2- 4ab 4(2a 2+ 1 ab)(4)_ _ 22-3(2x xy) 4(x xy 6)(8)(1。)(5) (x y) (x y)(6) 2(m n) 3(m x) 2x(7 ) 2x2 3x 1 (5 3x x2)2121(2a23a) 4(a a2)22(9

25、 ) a (5a 3b) 2( a 2b)122121 2-m n nm -mn- n m326练习:1、化简:(x y) (x y) 2(m n) 3(m x) 2x2、一个两位数,十位数字是 两位数是x ,个位数字比十位数字2倍少3,这个3、化筒:(1) 2x2 3x 1 (5 3x x2)(2)(2a2 g 3a) 4(a a2 g)(3)a (5a 3b) 2( a 2b)(4)1221212-m n nm mn - n m326五、代数式求值一一先化简,再求值代数式求值:1、用具体的数值代替代数式中的字母,按照代数式的运算关系计算, 所得的结果是代数式的值。2、求代数式的值时应注意以

26、下问题:(1)严格按求值的步骤和格式去做.(2) 一个代数式中的同一个字母,只能用同一个数值代替,若有多个字母,?代入时要注意对应关系,千万不能混淆.(3)在代入值时,原来省略的乘号要恢复,而数字和其他运算符号不变(4)字母取负数代入时要添括号(5)有乘方运算时,如果代入的数是分数或负数,要加括号例1当x=1, y=-3时,求下列代数式的值:(1) 3x2-2y2+1;(2)(x y)23xy 1例2当x 2时,求代数式5x (4x 1)的值例3 已知a, b互为倒数,m, n互为相反数,求代数式 (2m 2n 3ab)2的例4化简,求值: 9ab 6b23(ab 3b" 1,其中

27、a b 12x2(x 3y2) (米 3y2),其中 x 2,y I经典例题例题1.若abx与ayb2是同类项,下列结论正确的是()A . X= 2, y=1 B . X=0, y=0 C . X= 2, y=0 D X=1, y=1例题2. 2x x等于()A.x B x C.3x D 3x例题3.x (2x-y)的运算结果是()A . x+y B . x y C . x y D . 3x y练习:1、当x 2时,求代数式5x (4x 1)的值2、已知a, b互为倒数,m, n互为相反数,求代数式(2m 2n 3ab)2的值3、已知m n 2,求7 3m 3n的值。 34、化简,求值: 9a

28、b 6b2 3(ab 2b2) 1,其中 a - , b 1 32x 2(x :y2) ( |x gy2),其中 x 2,y 232335、已知 A x2y 2xy2 1, B2x2y xy2 1,x2, y,,求 2AB2*六、探索规律列代数式例题1.观察下列数表:1234第-行2341 s颦二行345645674 A笫四杆 *根据数表所反映的规律,猜想第 6行与第6列的交叉点上的数应为,第n行与第n列交叉点上的数应为 (用含有n 的代数式表示,n为正整数)例题2.观察下列各等式:(1)以上各等式都有一个共同的特征:某两个实数的一等于这两个实数的;如果等号左边的第一个实数用 x表示,第二个实

29、数 用y表示,那么这些等式的共同特征可用含x, y的等式表示为(2)将以上等式变形,用含y的代数式表示x为(3)请你再找由一组满足以上特征的两个实数,并写由等式形式:例题3. 一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分如图133所示,则这串珠子被盒子遮住的部分有 颗.第四章 平面图形及其位置关系备注:这一章重要是为后面几何打基础:1、重点在平行的性质与证明。2、同旁内角、内错角、同位角的定义(这个有些学生在开始的时候 会由现小失误后面没什么问题)3、垂线的性质与判定线段、射线、直线1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有 两个端点。2、射线:将线段向一个方向无限

30、延长就形成了射线。射线有一个端 点。3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点,4、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。一个点可以用一个大写字母表示。一条直线可以用一个小写字母表示或用直线上两个点的大写字母表 示。一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。一条线段可以用一个小写字母表示或用它的端点的两个大写字母来称5图形l表示方 法端占八、长度1AB直线无无法AB 或 BA直线l端点二rOM射线OMi个无法1段层Al一线段Ab 或 BA)线段i2个可度 量长度5、点和直线的位置关系有两种:点在直线上,或者说直线经过这

31、个点。点在直线外,或者说直线不经过这个点。6、直线的性质(1)直线公理:经过两个点有且只有一条直线。(2)过一点的直线有无数条。(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较 大小。(4)直线上有无穷多个点。(5)两条不同的直线至多有一个公共点。7、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距 离。(点到直线的垂线段的长叫做点到直线的距离;平行线间垂线段 的长叫做平行线间的距离。)(3)线段的中点到两端点的距离相等。(4)线段的大小关系和它们的长度的大小关系是一致的。8、线段的中点:-*点M把线段AB分成相

32、等的两条相等的线段AM与BM点M叫做线段 AB的中点。AM = BM =1/2AB (或 AB=2AM=2BM9、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。10 、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。11、角的表示角的表示方法有以下四种:用数字表示单独的角,如/ 1, /2, /3等。表用小写的希腊字母表示单独的一个角,如/ a , / B , / Y , /e 等。用一个大写英文字

33、母表示一个独立(在一个顶点处只有一个角)的角,如/ B, / C等。用三个大写英文字母表示任一个角,如/BAR / BAE, / CAE等。注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。12、角的度量角的度量有如下规定:把一个平角 180 等分,每一份就是1 度的角,单位是度,用“°”表示, 1 度记作“ 1°”, n 度记作“ n°” 。把 1°的角 60 等分,每一份叫做1 分的角, 1 分记作“ 1 ” 。把 1 的角 60 等分,每一份叫做1 秒的角, 1 秒记作“ 1” 。1 ° =60 ,1 =60

34、”13、角的性质( 1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。( 2)角的大小可以度量,可以比较( 3)角可以参与运算。时针问题: (小学奥数)时针每小时30 °,每分钟 0.5 °;分针每分钟 6°;时针与分针每分钟差 5.5 ° .时针与分针夹角二分><5.5° 一时X 30(分针靠近12点)时针与分针夹角=时><30° 一分X 5.5(时针靠近12点)若结果大于 180°,另一角度用 360 °减这个角度。经过多少时间重合、垂直、在一条线上,用求出的重合、垂直、在

35、一条线上的时间减去现在的时间。 追及问题还可用追及度数/5.5 。14、角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。15、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。从一个 n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画( n-3 )条对角线,把这个n 边形分割成( n-2 )个三角形。n边形内角和等于(n-2) x 180 o正多边形(每条边都相等, 每个内角都相等的多边形)的每个内角都等于(n-2) x 180 / n。过n边形一个顶点有(n-3 )条对角线,n边形共(n-3 ) x n

36、/ 2 条 对角线16、圆:(1) 平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段 OA的长称为半径的长(通常简称为半径) 。(2) 圆上任意两点A、 B 间的部分叫做 圆弧 , 简称 弧 ,读作“圆弧AB'或“弧AB'(3) 由一条弧 AB 和经过这条弧的端点的两条半径OA OB所组成的图形叫做扇形。(4) 顶点在圆心的角叫做 圆心角 。15、平行线:在同一个平面内,不相交的两条直线叫做平行线。平行用符号“/”表示,如“ AB/ CD,读作“ AB平行于CD'。注意:( 1)平行线是无限延伸的,无论怎样延伸也不相交。( 2

37、)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。16、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。补充平行线的判定方法: ( 1)平行于同一条直线的两直线平行。( 2)在同一平面内,垂直于同一条直线的两直线平行。( 3)平行线的定义。17、垂直:两条直线相交成直角, 就说这两条直线互相垂直。 其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。直线AB, CD互相垂直,记作aAB±CD'(或"CDLAB'),读作“AB垂直于CD (或“ CD垂直于AB

38、')。18、垂线的性质:性质1:平面内,过一点有且只有一条直线与已知直线垂直。性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。19、点到直线的距离:过 A 点作 l 的垂线,垂足为 B 点,线段 AB 的长度叫做点 A 到直线 l 的距离。20、同一平面内,两条直线的位置关系:相交或平行。第五章 一元一次方程备注:解方程在小学已经学了很多了,现在算是加深与拓展。比如增加了一元一次方程方程的概念、含绝对值方程。主要在两个方面:1、解方程,主要是化简出现问题(去分母、去括号、移项变号等)主要是粗心,知道怎么做不过老是会忘2、方程运用题,重要是找等量关系列方程问

39、题1、方程含有未知数的等式叫做方程。2、方程的解能使方程左右两边相等的未知数的值叫做方程的解。3、等式的性质( 1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。( 2)等式的两边同时乘以同一个数( (或除以同一个不为 0 的数) , *所得结果仍是等式。4、一元一次方程只含有一个未知数,并且未知数的最高次数是 1 的整式方程叫做一元 一次方程。5、移项:把方程中的某一项 , 改变符号后 , 从方程的一边移到另一边,这种变形叫做移项 .6、解一元一次方程的一般步骤:( 1)去分母( 2)去括号( 3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。 )(

40、 4)合并同类项( 5)将未知数的系数化为16、列一元一次方程解应用题步骤:找等量关系,设未知数,列方程,解方程,检验解的正确性,作出回答。7、找等量的方法:( 1)读题分析法 : :多用于“和,差,倍,分问题”仔细读题, 找出表示相等关系的关键字, 例如: “大, 小, 多, 少,是,共,合,为,完成,增加,减少,配套 ” ,利用这些关键字列等量关系式。( 2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找等量关系是解决问题的关键。( 3)常用公式也可作为等量关系8、列方程解应用题的常用公

41、式:(1)行程问题:距离=速度X时间;(2)工程问题:工作量=工效x工时;(3)比率问题:部分=全体x比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度 =静水速度-水流速度;(5)商品价格问题:售价=定价X折X,售价=进价X ( 1+提高率),利润=售价-成本,利润=利润率X成本;(6)本息和=本金+禾I息;利息=本金x利率x期数(7)原量x (1+增长率)=现量;原量x (1-下降率)=现量 (只有1次增减)(8)周长、面积、体积问题:C 圆=2ttR;S 圆= TtR2;C长方形=2(a+b) ; S长方形=ab;C正方形=4a; S 正方形=a2;S 环形=兀(R2-r 2);V长方体=abc ;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论