版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1数学建模在机械设计与制造方面的应用摘要:数学建模的思想就是用数学的思路、方法去解决实际生产、生活当中所遇到的问题。古今中外几乎一切应用科学的基础都是数学建模,凡是要用数学解决的实际问题也 都是通过数学建模的过程来实现的。尤其到了20世纪中叶计算机和其他技术突飞猛进的发展,给数学建模以极大的推动,通过数学建模也极大地扩大了数学的应用范围。人们 越来越认识到数学建模的重要性。曾经有位外国学者说过: “一切科学和工程技术人员的教育必须包括数学和计算数学的更多内容。数学建模 ”以机械专业知识为背景,用“数学建模”的思想方法去分析解决案例中提出 的问题,在数学知识与机械专业知识间架起沟通的桥梁。关键词
2、:空间解析几何;机械制图;线图的程序化本文以机械专业知识为背景,用“数学建模”的思想方法,去分析和解决机 械制图学习中的问题,在数学知识与机械专业知识问架起沟通的桥梁点的空间坐标与点的三面投影1. 1空间直角坐标系21中点的投影空间的点A与有序数组(z,丫,z)存在对应的关系,即点 A的坐标为A(x,y,a'表示,表示,则Az)。点A到坐标面的距离:在第一卦限中,点A到卜面的投影为水平投影,用点a表示,则A到a的距离即为Aa=z。点A到V面的投影为正面投影,用点 则A到a '的距离即为Aa'=Y。点A到w面的投影为侧面投影,用点a”到a”的距离即为Aa' =z(
3、如图1所示)。1. 2机械制图中点的三面投影(如图2所示)。aXa例1已知空间点A的坐标(20 , 10, 15),求作点A的三面投影图。作图步骤(1)先画出投影轴,再由。点向左沿0X!由量取.17=20,得n;点; 过a。点作垂直于Ox的投影连线,在投影连线上由 a;点向下量取丫一 10,得水 平投影a点;在投影连线上由口 :点向上量取 z=15,得正面投影a 7点;(3)由 a、a'求出侧面投影a”点。过a'点作a'z垂直0z,过点0作45度辅助线,过a点作OY勺垂线,与45度辅助线相交于一点,过交点作 0丫睡线与投影连线a'a;相 交,交点即为点A的侧面投
4、影a'点例2 A点到OX轴的距离为20mm到0Z轴的距离为25mm并已知该点到H面的距 离为12mm试求点A的三面投影1. 4空间两点位置比较由已知点确定另一点位置:(1)直接根据点的坐标值确定。 根据各点到已知点A的坐标差确定(即两点间的坐标差确定)例3已知点A的正面投影n 7点和侧面投影口”点,又知 B点在A点左方20mm 后方10mr下方5mm C点在A点正下方10mm求作A点的水平投影和B,C点的三 面投影,并判断点的可见性。解:根据题意知可分空间,分析 B:点由与于A点 A点坐两标个差投为影:已 X。 确一定X该心点20的、空丫间a?位丫置A,根据点的投影规律可求出它的第三投
5、10、ZB-ZA= 5,以A点为参照,按照它们的坐标差和投影规律即可作出B点的三面投影。C点在A点的正下方,即两点的 X, y坐标值相等,两点在 H面上的投 影重合为一点,即为H面的重影点;Z坐标差:ZC ZA=l0,根据坐标差可求出 C点的三面投影。作图步骤:首先,由A点的两投影以7点、口”点求出第三投影口点;其次, 在投影连线f '左方20mmt作OXtt的垂线,与在投影连线f '上由a'点向下量取 5m所作水平线的交点为B的正面投影b'点,与由水平投影口点向上量取 10mm 所作水平线的交点为B点的水平投影b点,即求得B点的两面投影;第三,由B 点的两投影
6、b点、b'点求出第三投影b”点;第四,同样方法求出 C点的三面投 影;第五,判断可见性;A, C两点为相对于H面的重影点,C点在A点的下方,所以水平投影c点被n点遮住,不可见二 空间直线与直线的三面投影2. 1直线在三投影面体系中投影特性妇根据几何定理,两点可以确定一条直线,所以空间一直线的投影可由直线上 两点的同面投影来确定(通常取直线段的两个端点)。直线AB与三个投影面都不垂直,分别作出A、B两端点的投影,然后将其同名投影连接起来即得直线的三面投影(ab , a'bCA"b”)。2. 2线段实长及对三投影面的夹角由于投影面倾斜线AB与三个投影面都不平行,所以其三面
7、投影都不反映直线 的实长。利用直角三角形法求一般位置直线段的实长及对投影面的倾角。AB为一般位置直线,在ABba平面内过A乍AC/ab,交励于C,其中直角边AC-ab 即AB勺水平投影;BC=Bb-Aa-ZB艮卩B、A两点的Z坐标之差;斜边AB即为实长, 么BAC即为AMH面的倾角a在水平投影上作:过a或b作a6的垂线bB。,使bB。 =Z。z,连接aB。即为直线AB勺实长,么B。(f6即为AB寸H面的倾角口。同理, 可利用线段的正面投影a'b 7及A, B两点的y坐标差作出直角三角形a 76 7B, 则斜边6' B。就是AB的实长,么B。a'b7即为AB寸V面的倾角口
8、。可利用线段的侧面投影n, 6”及A,B两点的X坐标差作出直角三角形“, 6,B。,则斜边b"B。就是AB的实长,么Bo 6%”即为AB寸w面的倾角), 三 点到直线的距离3. 1直角投影定理空间垂直相交的两直线,若其中一条直线是某投影面的平行线,则两直线在 该投影面上的投影仍为直角何为数学建模?数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体 的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取 的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测, 试验和解释实际现象等内容。我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家
9、(指只 懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济 学家甚至心理学家等等的过程。数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际 事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实 际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述 更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格 的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称 为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的 数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的 一种理论替代。数学是
10、研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长 河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念 的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用 的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及, 人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特 别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化, 它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的 迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个 重要组成部分和思想库,数学已经成为一种能够普遍实施的技
11、术。培养同学 应用数学的意识和能力已经成为数学教学的一个重要方面。应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也 是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、 抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实 际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题 的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚 扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的 知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应 用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术
12、发展中的 重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者 必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科 技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在 进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和 竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在 许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教 学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比, 数学建模具有难度大、涉及面广、形式灵活,对教师和同学要求高等特点, 数学建模的教学本身是一个不断探索、不断创新
13、、不断完善和提高的过程。 为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学 模式,数学建模课程指导思想是:以实验室为基础、以同学为中心、以问题 为主线、以培养能力为目标来组织教学工作。通过教学使同学了解利用数学 理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能 力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工 作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当 代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。 数学建模以同学为主,教师利用一些事先设计好问题启发,引导同学主动查 阅文献资料和学习新知识,鼓励
14、同学积极开展讨论和辩论,培养同学主动探索,努力进取的学风,培养同学从事科研工作的初步能力,培养同学团结协 作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环 境去诱导同学的学习欲望、培养他们的自学能力,增强他们的数学素质和创 新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的 过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要 学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次 分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积
15、极性,充分发挥同学们的潜能。培训中广泛地采用的讨 论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作 用,竞赛中一定要使用计算机及相应的软件,如 Mathemathmatica,Matlab,M apple ,甚至排版软件等。二、数学建模的的作用1、培养同学的数学能力数学建模的研究对象是一些实际问题,要把这些实际问题用数学语言表述出来并转化成抽象的数学问题并非易事。这就要求人们在建模过程中经过 分析与综合、抽象与概括、比较与类比、系统化与具体化等阶段,这些阶段 中能培养同学们的分析综合能力、抽象概括能力、想象洞察能力、运用数学 工具的能力、通过实践验证数学模型的能力。2、激发同
16、学学习数学的兴趣数学建模改变了以教师为中心,只注重数学概念、定理的推理和证明, 而忽视了数学知识的应用性的传统的数学教学模式,打造以同学为中心的全 新的数学教学模式,培养同学的创造性,激发同学学习数学的兴趣。数学建 模是抽象的数学知识和形象的实际问题的有力的结合,是数学知识得以应用 的桥梁。例如:某对青年夫妇为买房向 银行贷款30万元,月利率为0.00465,根据 他们目前的收入与支出情况,结合还贷情况,他们选定了贷款期限为 25年(300 个月),由利率表可得这对夫妇每月要还 61.88730=1856.61问题1 :一年后他们还应交多少钱?问题2:若计算中的月利率改为年利率计算,并仍实行每
17、月还款方式(即每月还款额为全年还款额的1/12),银行和贷款个人哪个更愿意接受?这类小型的数学建模题就是当前的 经济问题与数学知识相结合,使同学们 认识到数学就在身边,数学的应用无处不在,激发了同学们学习数学的兴趣。3、培养同学知识的综合运用能力在建立数学模型过程中,对于不同的实际问题,常常要用到不同的数学 知识,如:高等数学、常微分方程、概率论与数理统计、运筹学、差分方程、组合数学、随即过程、计算方法、计算机模拟等等,在这就要求同学全面掌握并灵活运用这些数学知识。4、锻炼同学的动手能力由于数学建模研究的是实际问题,传统的一根笔、一张纸已不能满足现 实的需要,随着计算机的发展,各种数学软件包也
18、随之产生,同学利用这些 软件包把抽象的数学模型形象化、可视化,锻炼了同学的动手操作能力,激 发了同学学习数学的兴趣。5、培养同学的自学能力由于数学建模是对数学知识的综合应用,需要同学了解不同的数学类的 知识,而高校普遍的数学课时都不能满足这种需求,这就需要教师挖掘同学的自学能力。教师在课堂上做引导,对数学知识做“串线式”的讲解,让同学在课下对这些知识再做进一步的研究、探讨,以培养同学的自学能力。6、培养同学的创造性能力由于数学建模的题目都来源于实际问题,解题的过程没有标准答案,这 就需要教师鼓励同学提出自己的想法,大胆质疑,打破习惯的思维模式,利 用自己已经学过的数学知识,展开联想,发挥个人的
19、创造性,使问题得以解 决。数学建模为同学架起了一座从数学知识到实际问题的桥梁。在数学建模 过程中,同学不仅要有扎实的数学知识,能融会贯通,而且要求多接触实际, 跨学科扩大知识面。数学建模为培养同学的多种能力提供了场所和途径,使 同学的素质有了整体的提高,在高校数学教学改革中占有重要的地位。如何学习数学建模?目前,开展数学建模教学的途径与方法很多,其中比较常用且很奏效 的途径和方法就是以数学建模活动为载体开展数学建模教学,其途径和方法 可以描述如下:1精心设计教学案例,开展案例教学法所谓案例教学法就是在课堂教学中,教师以具体的案例作为主要的教学 内容,通过具体问题的建模示例,介绍建模的思想方法。
20、课堂上的活动一部 分是老师讲授,另一部分是让学生进行课堂讨论,即由学生发言,提出对问 题的理解和所建立的数学模型的认识,并提出新的数学模型,对其求解、分 析、讨论,进行比较 检验。实施案例教学要把握好以下环节:(1) 教学案例的选取。要使案例教学达到最佳效果,最重要的就是选好教学案例。选取案例时应该遵循以下的原则:代表性。案例避免涉及过多的 专业知识,又要考虑到科学的发展,学科之间的联系,同时可以拓宽学生的 知识面。原始性。来自广播 电视、报刊的信息,政府机关、企事业单位的 报告、计划、统计资料等等,都是数学建模问题原始资料的重要来源;也可 以引导学生亲自到一线 调查研究,注意积累课题资料。趣
21、味性。在具体选 取案例时,应该选择既有趣味性又能充分体现数学建模思想的案例,如人口问题、七桥问题、人狼羊过河问题、三级火箭发射卫星问题、森林灭火问题等等。从培养兴趣入手,让学生逐步体会到建模的思想方法和建模的重要性。创新性。编制建模例题时,必须考虑培养学生的创新精神和创造能力。为 此,应注重一题多模或多题一模、统计图表等例题的编拟,密切关注现代科 学技术的发展,使学生创新和高新技术密切结合,融入当代科学发展的主流。(2) 案例的课堂教学。教师在讲授具体的建模案例时,应注重两个方面。 第一个方面要从实际问题出发,讲清问题的背景、建模的要求和已掌握的信 息,如何通过合理的假设和简化分析建立优化的数
22、学模型。还要强调如何用 求解结果去解释实际现象,检验模型。这种方法既突出了教学的重点,又给 学生留下了进一步思考的空间。例如讲授传染病模型时,不同的假设会导致建立不同的模型,只有从实际出发,不断地修正才能使之成为一个成功的模 型。除此,还可以给学生提供一些改进的方向,让学生自己课外独立探索和 钻研。另外一个方面是教师的讲授必须和学生的讨论相结合。在教师先讲清 楚案例的背景、关键的因素、所运用的数学工具等情况下,运用怎样的数学 知识和数学思想、建立怎样的数学模型可以让学生各抒己见,进行讨论式教 学。这样一方面可以避免教师的“满堂灌”,另一方面可以活跃课堂气氛,提高学生的课堂学习兴趣和积极性,使传
23、授知识变为学习知识、应用知识,真 正地达到提高素质和培养能力的教学目的。2把好课后建模实践训练关,巩固和深化课堂教学为了巩固和深化课堂教学的内容,使学生进一步地提高建模能力,建模 实践训练也是数学建模教学的重要环节。主要有以下的形式:一是布置课后 训练题。第一种类型的训练题可以是用课堂上讲过的数学建模方法建模或者 是对课上某个问题做进一步的讨论,这是为了达到巩固课堂教学的目的另一种类型是为了达到深化课堂教学的目的,在学完有关数学知识单元后,布置该单元知识的训练题,在特定的时间内,让学生在数学建模实验室 进行建模强化训练。对每次的训练题要完整地完成,从提出问题、分析问题、 建立模型、求解模型到模
24、型的分析、检验、推广的全过程,并在规定时间内完成一篇思路清晰、条理有序的数学论文。通过此过程的强化训练,使学生 的认模、建模、用模的能力得到充分地锻炼和提高。每次训练题做完后第一 个环节就是教师对训练论文认真批阅审定,对论文中出现的问题及时提出指 正意见;第二个环节是组织全班成员对训练论文进行专题讨论,让同学们讲 述论文构思、建模思想与方法。通过整体交流,让大家互相学习、取长补短, 达到共同提高的目的。二是系统讲授数学软件,并让学生上机实习。随着计算机技术的发展,一些高性能的、应用性强的数学软件应运而生,如Matlab、Mathematica、Mapple、SAS、Li ndo、Lin go 等。有了这些数学软件的出现, 教材中复杂的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工劳务合同简易版2篇
- 搅拌机销售合同范例3篇
- 新版视频剪辑视频合同3篇
- 新最完整房屋买卖合同范文3篇
- 教育培训服务合同协议书3篇
- 放牧合同书样本全新版3篇
- 工业振动控制设备安装工程合同书3篇
- 断桥铝门窗安装招标3篇
- 数量责任声明3篇
- 撤销委托决定3篇
- 2024-2030年中国金华火腿腌制项目可行性研究报告
- 2024-2030年中国家用小家电项目可行性研究报告
- 《隧道工程监控量测》课件
- 环保项目荒山租赁协议模板
- xx单位政务云商用密码应用方案V2.0
- 2024年度校园体育设施维修保养合同
- 机电一体化项目职业技能大赛试题(SX-815Q)
- 电厂应急物资培训
- 2025年春九年级语文下册 第三单元综合测试卷(人教陕西版)
- 吊装起重作业安全培训课件
- 行政人员的培训
评论
0/150
提交评论