版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、材料力学阶段总结材料力学的一些基本概念1. 材料力学的任务:解决安全可靠与经济适用的矛盾。研究对象:杆件强度:抵抗破坏的能力刚度:抵抗变形的能力稳定性:细长压杆不失稳。2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。均匀性:构件内各处的力学性能相同。各向同性:物体内各方向力学性能相同。3. 材力与理力的关系,内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同;理力:刚体,材力:变形体。内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。、作用应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点) 方向、和符号规定。压应力正应力拉应力应
2、变:反映杆件的变形程度线应变角应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。4. 物理关系、本构关系虎克定律;剪切虎克定律:旦EA拉压虎克定律:线段的 拉伸或压缩。E剪切虎克定律:两线段 夹角的变化。Gr适用条件:应力应变是线性关系:材料比例极限以内。5. 材料的力学性能(拉压):张0- 图,两个塑性指标3、 ,三个应力特征点:P、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。拉压弹性模量E,剪切弹性模量G,泊松比v, GE2(1 V)变形强度抗冲击应力集中塑性材料流动、断裂变形明显拉压 s的基本相同较好地承受冲击、振动不敏感脆性无流动、脆断仅适用承压非常敏感塑性材料与脆性材料的
3、比较:6. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使构件安全性下降;过大,浪费材料。许用应力:极限应力除以安全系数。塑性材料s 0nss脆性材料7.材料力学的研究方法bnb1)所用材料的力学性能:通过实验获得。2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。3)截面法:将内力转化成“外力”。运用力学原理分析计算。8材料力学中的平面假设寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处
4、相等。2)圆轴扭转的平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。3)纯弯曲梁的平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。9小变形和叠加原理小变形: 梁绕曲线的近似微分方程 杆件变形前的平衡 切线位移近似表示曲线 力的独立作用原理叠加原理: 叠加法求内力 叠加法求变形。10材料力学中引入和使用的的工程名称及其意义(概念)1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷载。2)单元体,应力单元体,主应力单元体。3)名义剪应力,名义挤压力,单剪切,双剪切。4)自由扭转,约束扭转
5、,抗扭截面模量,剪力流。5)纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度,斜弯曲,截面核心,折算弯矩,抗弯截面模量。6)相当应力,广义虎克定律,应力圆,极限应力圆。7)欧拉临界力,稳定性,压杆稳定性。8)动荷载,交变应力,疲劳破坏。.杆件四种基本变形的公式及应用1. 四种基本变形:基本变形截面几何性质刚度应力公式变形公式备注拉伸与压缩面积:A抗拉(压)刚度EANAl NlEA、,、. -M、7 Tt注意变截面及变轴力的情况剪切面积:AQA实用计算法圆轴扭转极惯性矩抗扭刚度MT maxMTlI p2dAGIPmaxWpGI P纯弯曲惯性矩抗弯刚度Mmaxd2y dx2
6、(丄M (x)EI zM (x)挠度yI zy2dAEI zmaxW转角旦dxEI z2.四种基本变形的刚度,都可以写成刚度=材料的物理常数X截面的几何性质1)物理常数:某种变形引起的正应力:抗拉(压)弹性模量E;某种变形引起的剪应力:抗剪(扭)弹性模量2)截面几何性质:拉压和剪切:变形是截面的平移:取截面面积 A;扭转:各圆截面相对转动一角度或截面绕其形心转动:取极惯性矩I ;梁弯曲:各截面绕轴转动一角度:取对轴的惯性矩3. 四种基本变形应力公式都可写成:内力应力=截面几何性质对扭转的最大应力:截面几何性质取抗扭截面模量Wpmax对弯曲的最大应力:截面几何性质取抗弯截面模量WzIzymax4
7、. 四种基本变形的变形公式,都可写成:内力长度变形=刚度因剪切变形为实用计算方法,不考虑计算变形。弯曲变形的曲率(X)d2yd7,一段长为1的纯弯曲梁有:MxlElz补充与说明:1、关于“拉伸与压缩”指简单拉伸与简单压缩,即拉力或压力与杆的轴线重合;若外荷载作用线不与轴线重合,就成为拉(压)与弯曲的组合变形问题;杆的压缩问题,要注意它的长细比(柔度)。这里的简单压缩是指“小柔度压缩问题”。2、关于“剪切”实用性的强度计算法,作了剪应力在受剪截面上均匀分布的假设。要注意有不同的受剪截面:a. 单面受剪:受剪面积是铆钉杆的横截面积;b. 双面受剪:受剪面积有两个:考虑整体结构,受剪面积为2倍销钉截
8、面积;运用截面法,外力一分为二,受剪面积为销钉截面积。c. 圆柱面受剪:受剪面积以冲头直径d为直径,冲板厚度 t为高的圆柱面面积。3. 关于扭转表中公式只实用于圆形截面的直杆和空心圆轴。等直圆杆扭转的应力和变形计算公式可近似分析螺旋弹簧的应力和变形问题是应用杆件基本变形理论解决实际问题的很好例子。4. 关于纯弯曲纯弯曲,在梁某段剪力 Q=0时才发生,平面假设成立。横力弯曲(剪切弯曲)可以视作剪切与纯弯曲的组合,因剪应力平行于截面,弯曲正应力 垂直于截面,两者正交无直接联系,所以由纯弯曲推导出的正应力公式可以在剪切弯曲中 使用。5. 关于横力弯曲时梁截面上剪应力的计算问题为计算剪应力,作为初等理
9、论的材料力学方法作了一些巧妙的假设和处理,在理解矩形截面梁剪应力公式时,要注意以下几点:1)无论作用于梁上的是集中力还是分布力,在梁的宽度上都是均匀分布的。故剪应力在宽度上不变,方向与荷载(剪力)平行。2)分析剪应力沿梁截面高度分布变化规律时,若仅在截面内,有n (h)bdh Q,因(h)的函数形式未知,无法积分。但由剪应力互等定理,考虑微梁段左、右内力的平衡,可以得出:QSzIzb剪应力在横截面上沿高度的变化规律就体现在静矩Sz上,Sz总是正的。剪应力公式及其假设:a.矩形截面假设1 :横截面上剪应力T与矩形截面边界平行,与剪应力Q的方向一致;假设2 :横截面上同一层高上的剪应力相等。剪应力
10、公式:*(y)QSz(y)IzbS(y)2(寸max2 bh平均b.非矩形截面积假设1:同一层上的剪应力作用线通过这层两端边界的切线交点,剪应力的方向与剪力的方向。假设2 :同一层上的剪应力在剪力 Q方向上的分量y相等。剪应力公式:*y(y)QSz(y)b(y)izc.薄壁截面* 2 2Sz(y) -(R24 Qy(y) s?2 1maxy2)平均假设1:剪应力 与边界平行,与剪应力谐调。假设2 :沿薄壁t, 均匀分布。剪应力公式:*QSztI学会运用“剪应力流”概念确定截面上剪应力的方向。三.梁的内力方程,内力图,挠度,转角遵守材料力学中对剪力 Q和弯矩M的符号规定。在梁的横截面上,总是假定
11、内力方向与规定方向一致,从统一的坐标原点出发划分梁的区间,且把梁的坐标原点放在梁的左端(或右端),使后一段的弯矩方程中总包括前面各段。均布荷载q、剪力Q、弯矩M、转角B、挠度y间的关系:dMdQ由:dxdxdMdxEld4ydx4设坐标原点在左端,则有:Eld4ydx4为常值Eld3y dx3qxEld2ydx2Axy:EldxEl yx3BxJ24x2 Cx D其中A、B、C、D四个积分常数由边界条件确定。例如,如图示悬臂梁:lx 10y lx i 0El y2x424则边界条件为:Q lx 00 A 0M |x o 0 B 0qi36q 148ql48EI截面法求内力方程:内力是梁截面位置
12、的函数,内力方程是分段函数,它们以集中力偶的作用点,分布的 起始、终止点为分段点;1)在集中力作用处,剪力发生突变,变化值即集中力值,而弯矩不变;2)在集中力偶作用处,剪力不变,弯矩发生突变,变化值即集中力偶值;3)剪力等于脱离梁段上外力的代数和。脱离体截面以外另一端,外力的符号同剪力符号 规定,其他外力与其同向则同号,反向则异号;4)弯矩等于脱离体上的外力、外力偶对截面形心截面形心的力矩的代数和。外力矩及外力偶的符号依弯矩符号规则确定。梁内力及内力图的解题步骤:1)建立坐标,求约束反力;2)划分内力方程区段;3)依内力方程规律写出内力方程;4)运用分布荷载q、剪力Q、弯矩M的关系作内力图;d
13、2M dQq x , dx关系:ddx2輕Qx dxQd Qc q x d xc规定:荷载的符号规定:分布荷载集度向上为正;坐标轴指向规定:梁左端为原点,x轴向右为正。剪力图和弯矩图的规定:剪力图的Q轴向上为正,弯矩图的轴向下为正。5)作剪力图和弯矩图: 无分布荷载的梁段,剪力为常数,弯矩为斜直线;M图有正斜率(); Q V 0 ,有负斜率(/); 有分布荷载的梁段(设为常数),剪力图为一斜直线,弯矩图为抛物线;q V 0, Q图有负斜率() , M图下凹();q 0 , Q图有正斜率(/), M图上凸(一);Q=0的截面,弯矩可为极值; 集中力作用处,剪力图有突变,突变值为集中力之值,此处弯
14、矩图的斜率也突变,弯矩图有尖角; 集中力偶作用处,剪力图无变化,弯矩图有突变,突变值为力偶之矩;,确定最大 在剪力为零,剪力改变符号,和集中力偶作用的截面(包括梁固定端截面)弯矩(M 指定截面上的剪力等于前一截面的剪力与该两截面间分布荷载图面积值的和;指定截面 积上的弯矩等于前一截面的弯矩与该两截面间剪力图面积值的和。共轭梁法求梁的转角和挠度:要领和注意事项:1)首先根据实梁的支承情况,确定虚梁的支承情况2)绘出实梁的弯矩图,作为虚梁的分布荷载图。特别注意:实梁的弯矩为正时,虚分布荷载 方向向上;反之,则向下。3)虚分布荷载q x的单位与实梁弯矩M x单位相同 若为KN m,虚剪23力的单位则
15、为 KN m ,虚弯矩的单位是KN m4)由于实梁弯矩图多为三角形、矩形、二次抛物线和三次抛物线等。计算时需要这些图 形的面积和形心位置。叠加法求梁的转角和挠度:各荷载对梁的变形的影响是独立的。当梁同时受n种荷载作用时,任一截面的转角和挠度可根据线性关系的叠加原理,等于荷载单独作用时该截面的转角或挠度的代数和。四应力状态分析1单向拉伸和压缩应力状态划分为单向、二向和三向应力状态。是根据一点的三个主应力的情况而确定的。如:1x ,230单向拉伸有:X-XE,Yzv x主应力只有1x,但就应变,三个方向都存在。若沿和2取出单元体,则在四个截面上的应力为xCos2x2:Sin22xSin22x Si
16、n22看起来似乎为二向应力状态,其实是单向应力状态。2.二向应力状态.有三种具体情况需注意1)已知两个主应力的大小和方向,求指定截面上的应力2Cos2Sin2由任意互相垂直截面上的应力,求另一任意斜截面上的应力yCos2xSi n2y Sin2xCos2由任意互相垂直截面上的应力,求这一点的主应力和主方向l(y )2tg2 o(角度和 o均以逆时针转动为正)2)二向应力状态的应力圆应力圆在分析中的应用:a)应力圆上的点与单元体的截面及其上应力一一对应;b)应力圆直径两端所在的点对应单元体的两个相互垂直的面;c)应力圆上的两点所夹圆心角(锐角)是应力单元对应截面外法线间夹角的两倍d)应力圆与正应
17、力轴的两交点对应单元体两主应力;e)应力圆中过圆心且平行剪应力轴而交于应力圆的两点为最大、最小剪应力及其作用面。 极点法:确定主应力及最大(小)剪应力的方向和作用面方向。3)三方向应力状态,三向应力圆,一点的最大应力(最大正应力、最大剪应力)广义虎克定律:弹性体的一个特点是,当它在某一方向受拉时,与它垂直的另外方向就会收缩。反之,沿一个方向缩短,另外两个方向就拉长。主轴方向:3)11E2v1v 1v 23v1E12或1v12vv 2v 31E131V12vv 3v 12非主轴方向:体积应变:12v123123E五. 强度理论1. 计算公式强度理论可以写成如下统一形式:r其中: r :相当应力,
18、由三个主应力根据各强度理论按一定形式组合而成。:许用应力,:单向拉伸时的极限应力,n:安全系数。1)最大拉应力理论(第一强度理论)r1 1 ,般:2)最大伸长线应变理论(第二强度理论)r23)最大剪应力理论(第三强度理论)4)r3般:形状改变比能理论(第四强度理论)3,一般:1r4,. 2122223231, 一般:sn5)莫尔强度理论00M13n ,:材料抗拉极限应力强度理论的选用:1)一般, 脆性材料应采用第一和第二强度理论;塑性材料应采用第三和第四强度理论。2)对于抗拉和抗压强度不同的材料,可采用最大拉应力理论3)三向拉应力接近相等时,宜采用最大拉应力理论;4)三向压应力接近相等时,宜应
19、用第三或第四强度理论。六. 分析组合形变的要领材料服从虎克定律且杆件形变很小,则各基本形变在杆件内引起的应力和形变可以进 行叠加,即叠加原理或力作用的独立性原理。分析计算组合变形问题的要领是分与合:分:即将同时作用的几组荷载或几种形变分解成若干种基本荷载与基本形变,分别计算应 力和位移。合:即将各基本变形引起的应力和位移叠加,一般是几何和。分与合过程中发现的概念性或规律性的东西要概念清楚、牢记。斜弯曲:平面弯曲时,梁的挠曲线是荷载平面内的一条曲线,故称平面弯曲;斜弯曲时,梁的挠曲 线不在荷载平面内,所以称斜弯曲。斜弯曲时几个角度间的关系要清楚:力作用角(力作用平面):斜弯曲中性轴的倾角:斜弯曲
20、挠曲线平面的倾角:tg1 y即:般,强度刚度计算公式:M maxmaxWztgFtgy挠度方向垂直于中性轴即:挠曲线平面与荷载平面不重合。cosWzsinWcPy|33EI z止cos3EI zPzl33EI y3Plsin3EI y拉(压)与弯曲的组合:拉(压)与弯曲组合,中性轴一般不再通过形心,截面上有拉应力和压应力之区别 偏心拉压问题,有时要求截面上下只有一种应力,这时载荷的作用中心与截面形心不能差得太远,而只能作用在一个较小的范围内这个范围称为截面的核心。强度计算公式及截面核心的求解:maxmaxminWzypy。zpZ。-2iz-2iy 2y 2AZp扭转与弯曲的组合形变:机械工程中
21、常见的一种杆件组合形变,故常为圆轴。分析步骤:根据杆件的受力情况分析出扭矩和弯矩和剪力。找出危险截面:即扭矩和弯矩均较大的截面。由扭转和弯曲形变的特点,危险点在轴的表面。ayaz剪力产生的剪应力一般相对较小而且在中性轴上(弯曲正应力为零)。一般可不考虑剪力的作用。弯扭组合一般为复杂应力状态,应采用合适的强度理论作强度分析,强度计算公式:r3r3r4扭转与拉压的组合:24 MtWP23 *Wp杆件内最大正应力与最大剪应力一般不在横截面或纵截面上,应选用适当强度理论作强度分析。强度计算公式r34Mt 22WMt2r4W :m2 t七. 超静定问题:拉压压杆的超静定问简单超静定梁问题一一力力总结:分
22、析步骤 关键点:变形协调条件求解简单超静定梁主要有三个步骤:1)解得超静定梁的多余约束而以其反力代替;2)求解原多余约束处由已知荷载及“多余”约束反力产生的变形;3)由原多余支座处找出变形协调条件,重立补充方程。能量法求超静定问题:力 dx0 2 刚度dxdx0 2Gdx止dx2G卡氏第一定理:应变能对某作用力作用点上该力作用方向上的位移的偏导数等于该作用力,即:Pi注1:卡氏第一定理也适用于非线性弹性体 注2 :应变能必须用诸荷载作用点的位移来表示卡氏第二定理:线弹性系统的应变能对某集中荷载的偏导数等于该荷载作用点上沿该荷载方向上的位移,即UF若系统为线性体,则:U U注1:卡氏第二定理仅适
23、用于线弹性系统;卡氏第二疋理的应变能须用独立何载表示。注2 :用卡氏定理计算,若得正号,表示位移与荷载冋向;若得负号,表示位移与荷载反向。计算的正负与坐标系无关。用卡氏第一定理解超静定问题,可以采用第八章介绍的方法, 即去掉“多余”约束,代之约束反力和约束给定的位移条件,此时约 東给定的位移条件可用卡氏第二定理表达亡如图9J0所示超 諦定折杆,是三次超静定,去扌車C端爹余“的因定端约束,代之以 约東反力ac,ycj呢静定基如图b)所示,对应的谐调方程(约束 限定的位移条件用卡氏第二定理表示为(9-20)3W 八B n3U 二 II r运用卡氏第二绽理述可有另一种解袪,即把趙静定结构和截戏若 干
24、个平衡的或静定的部分丫在截血两侧脱离体戡恸匕的成对内力以外B3 9-10两类静泄基力形式出现,如图9-l(fc)0T示,用卡氏第二定理表示的截面的连续条 件就是变形谐调方程,如图9- Qa)所示的趙静定结构,化成图“所示 的两个静宦梁,应变能“工柚+ &时在B点处折梁是连续的,即AB 梁的B面与BC梁的B面间相对位移为零故有at/a:=0(9-21)第二种解法,在书写内力方程,计算应变能时都比较方便,所以用 连续条件作为谐调方程也是常用的解超静运方法八. 压杆稳定性的主要概念压杆失稳破坏时横截面上的正应力小于屈服极限(或强度极限),甚至小于比例极限。即失稳破坏与强度不足的破坏是两种性质完全不同
25、的破坏。临界力是压杆固有特性,与材料的物性有关(主要是E),主要与压杆截面的形状和尺寸,杆的长度,杆的支承情况密切相关。计算临界力要注意两个主惯性平面内惯矩I和长度系数 口的对应。压杆的长细比或柔度表达了欧拉公式的运用范围。细长杆(大柔度杆)运用欧拉公式 判定杆的稳定性,短压杆(小柔度杆)只发生强度破坏而一般不会发生失稳破坏;中长杆(中柔度杆)既有强度破坏又有较明显失稳现象,通常根据实验数据处理这类问题,直线 经验公式是最简单实用的一种。折剪系数2是柔度 入的函数,这是因为柔度不同,临界应力也不同。且柔度不同, 安全系数也不同。压杆稳定性的计算公式:欧拉公式及”系数法(略)九. 动荷载、交变应力及疲劳强度1.动荷载分析的基本原理和基本方法:1)动静法,其依据是达朗贝尔原理。这个方法把动荷的问题转化为静荷的问题。2)能量分析法,其依据是能量守恒原理。这个方法为分析复杂的冲击问题提供了简略的计算手段。在运用此法分析计算实际工程问题时应注意回到其基本假设逐项进行考察与分析,否则有时将得出不合理的结果。构件作等加速运动或等角速转动时的动载荷系kd这个式子是动荷系数的定义式,它给出了件的具体运动方式,经分析推导而定。构件受冲击时的冲击动荷系数kd为:kdkd为:stkd的内涵和外延。kd的计算式,则要根据构dddstst这个式子是冲击动荷
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 分物游戏(说课稿)-2024-2025学年二年级上册数学北师大版
- 二零二五年度建筑工程安全生产环保验收合同3篇
- 全国人教版初中信息技术七年级上册第四单元第13课七、《插入更新日期》说课稿
- 山东省泰安市肥城市2024-2025学年六年级上学期末考试道德与法治试题(含答案)
- 200万套基于AI大模型的新能源汽车热泵空调部件柔性制造智能工厂项目可行性研究报告写作模板-申批备案
- Unit6 Meet my family B Lets talk Lets learn(说课稿)-2024-2025学年人教PEP版英语四年级上册
- 河南省信阳市浉河区2024-2025学年三年级上学期期末学业质量监测数学试题参考答案
- 湖南省娄底市(2024年-2025年小学六年级语文)部编版阶段练习(上学期)试卷及答案
- 贵州盛华职业学院《建筑设备(暖通空调)》2023-2024学年第一学期期末试卷
- 贵州轻工职业技术学院《医疗诊断前沿技术与创新应用》2023-2024学年第一学期期末试卷
- 浙江省宁波市慈溪市2023-2024学年高三上学期语文期末测试试卷
- 草学类专业生涯发展展示
- 法理学课件马工程
- 《玉米种植技术》课件
- 第47届世界技能大赛江苏省选拔赛计算机软件测试项目技术工作文件
- 2023年湖北省公务员录用考试《行测》答案解析
- M200a电路分析(电源、蓝牙、FM)
- 2024-2030年全球及中国洞察引擎行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 建筑工程施工图设计文件审查办法
- 置业顾问考核方案
- 吉林市2024-2025学年度高三第一次模拟测试 (一模)数学试卷(含答案解析)
评论
0/150
提交评论