利用MINITAB做蒙特卡洛模拟_第1页
利用MINITAB做蒙特卡洛模拟_第2页
利用MINITAB做蒙特卡洛模拟_第3页
利用MINITAB做蒙特卡洛模拟_第4页
利用MINITAB做蒙特卡洛模拟_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、DoingMonteCarloSimulationinMinitabStatisticalSoftwareDoingMonteCarlosimulationsinMinitabStatisticalSoftwareisveryeasy.ThisarticleillustrateshowtouseMinitabforMonteCarlosimulationsusingbothaknownengineeringformulaandaDOEequation.byPaulSheehyandEstonMartzMonteCarlosimulationusesrepeatedrandomsamplingt

2、osimulatedataforagivenmathematicalmodelandevaluatetheoutcome.Thismethodwasinitiallyappliedbackinthe1940s,whenscientistsworkingontheatomicbombusedittocalculatetheprobabilitiesofonefissioninguraniumatomcausingafissionreactioninanother.Withuraniuminshortsupply,therewaslittleroomforexperimentaltrialande

3、rror.Thescientistsdiscoveredthataslongastheycreatedenoughsimulateddata,theycouldcomputereliableprobabilitiesandreducetheamountofuraniumneededfortesting.Today,simulateddataisroutinelyusedinsituationswhereresourcesarelimitedorgatheringrealdatawouldbetooexpensiveorimpractical.ByusingMinitab'sabilit

4、ytoeasilycreaterandomdata,youcanuseMonteCarlosimulationto:SSimulatetherangeofpossibleoutcomestoaidindecision-makingfForecastfinancialresultsorestimateprojecttimelinesuUnderstandthevariabilityinaprocessorsystemFFindproblemswithinaprocessorsystemMManageriskbyunderstandingcost/benefitrelationshipsSteps

5、intheMonteCarloApproachDependingonthenumberoffactorsinvolved,simulationscanbeverycomplex.Butatabasiclevel,allMonteCarlosimulationshavefoursimplesteps:1. IdentifytheTransferEquationTodoaMonteCarlosimulation,youneedaquantitativemodelofthebusinessactivity,plan,orprocessyouwishtoexplore.Themathematicale

6、xpressionofyourprocessiscalledthetransferequation."Thismaybeaknownengineeringorbusinessformula,oritmaybebasedonamodelcreatedfromadesignedexperiment(DOE)orregressionanalysis.2. DefinetheInputParametersForeachfactorinyourtransferequation,determinehowitsdataaredistributed.Someinputsmayfollowthenor

7、maldistribution,whileothersfollowatriangularoruniformdistribution.Youthenneedtodeterminedistributionparametersforeachinput.Forinstance,youwouldneedtospecifythemeanandstandarddeviationforinputsthatfollowanormaldistribution.3. CreateRandomDataTodovalidsimulation,youmustcreateaverylarge,randomdatasetfo

8、reachinputsomethingontheorder100,000instances.Theserandomdatapointssimulatethevaluesthatwouldbeseenoveralongperiodforeachinput.Minitabcaneasilycreaterandomdatathatfollowalmostanydistributionyouarelikelytoencounter.4. SimulateandAnalyzeProcessOutputWiththesimulateddatainplace,youcanuseyourtransferequ

9、ationtocalculatesimulatedoutcomes.Runningalargeenoughquantityofsimulatedinputdatathroughyourmodelwillgiveyouareliableindicationofwhattheprocesswilloutputovertime,giventheanticipatedvariationintheinputs.ThosearethestepsanyMonteCarlosimulationneedstofollow.Here'showtoapplytheminMinitab.MonteCarloU

10、singaKnownEngineeringFormulaAmanufacturingcompanyneedstoevaluatethedesignofaproposedproduct:asmallpistonpumpthatmustpump12mloffluidperminute.Youwanttoestimatetheprobableperformanceoverthousandsofpumps,givennaturalvariationinpistondiameter(D),strokelength(L),andstrokesperminute(RPM).Ideally,thepumpfl

11、owacrossthousandsofpumpswillhaveastandarddeviationnogreaterthan0.2ml.Step1:IdentifytheTransferEquationThefirststepindoingaMonteCarlosimulationistodeterminethetransferequation.Inthiscase,youcansimplyuseanestablishedengineeringformulathatmeasurespumpflow:Flow(inml)=MD/2)2?L?RPMStep2:DefinetheInputPara

12、metersNowyoumustdefinethedistributionandparametersofeachinputusedinthetransferequation.Thepump'spistondiameterandstrokelengthareknown,butyoumustcalculatethestrokes-per-minute(RPM)neededtoattainthedesired12ml/minuteflowrate.Volumepumpedperstrokeisgivenbythisequation:KD/2)2*LGivenD=0.8andL=2.5,eac

13、hstrokedisplaces1.256ml.Sotoachieveaflowof12ml/minutetheRPMis9.549.Basedontheperformanceofotherpumpsyourfacilityhasmanufactured,youcansaythatpistondiameterisnormallydistributedwithameanof0.8cmandastandarddeviationof0.003cm.Strokelengthisnormallydistributedwithameanof2.5cmandastandarddeviationof0.15c

14、m.Finally,strokesperminuteisnormallydistributedwithameanof9.549RPMandastandarddeviationof0.17RPM.Step3:CreateRandomDataNowyou'rereadytosetupthesimulationinMinitab.WithMinitabyoucaninstantaneouslycreate100,000rowsofsimulateddata.Startingwiththesimulatedpistondiameterdata,chooseCalc>RandomData&

15、gt;Normal.Inthedialogbox,enter100,000inNumberofrowsofdatatogenerate,andenterD”asthecolumninwhichtostorethedata.Enterthemeanandstandarddeviationforpistondiameterintheappropriatefields.PressOKtopopulatetheworksheetwith100,000datapointsrandomlysampledfromthespecifiednormaldistribution.1Thensimplyrepeat

16、thisprocessforStrokeLength(L)andStrokesperMinute(RPM).Step4:SimulateandAnalyzeProcessOutputNowcreateafourthcolumnintheworksheet,Flow,toholdtheresultsofyourprocessoutputcalculations.Withtherandomlygeneratedinput data in place, you can set up Minitabs calculator to calculate the output and store it in

17、 the Flow column. Go toCalc > Calculatorandsetuptheflowequationlikethis:and select the Flow column. Minitab willMinitabwillquicklycalculatetheoutputforeachrowofsimulateddata.Nowyou'rereadytolookattheresults.SelectStat>BasicStatistics>GraphicalSummarygenerateagraphicalsummarythatincludes

18、fourgraphs:ahistogramofdatawithanoverlaidnormalcurve,boxplot,andconfidenceintervalsforthemeanandthemedian.ThegraphicalsummaryalsodisplaysAnderson-DarlingNormalityTestresults,descriptivestatistics,andconfidenceintervalsforthemean,median,andstandarddeviation.5$5% Confkence Interval*NodtaHh 11g urn119W

19、12mnmn MQs the powerThegraphicalsummaryofyourMonteCarlosimulationoutputwilllooklikethis:SummaryforFlowAnderson-DttrtmghtormagTea:A-SQU4n«d2.MH«n1?Varwcfl0.573SAmmesOCMISMOKwtwfDm11339w10000aHlwmrn8,882I 就®ar琬e11A91Median1L995和1251115如95%GorrMenceIrwenrWlferM«n11,999U.D09第咻SiAdent

20、*MedianII 湖L2.OO295%ConM«nc«InurvalfarStiDwvJSJ0.760Fortherandomdatageneratedtowritethisarticle,themeanflowrateis12.004basedon100,000samples.Onaverage,weareontarget,butthesmallestvaluewas8.882andthelargestwas15.594.That'squitearange.Thetransmittedvariation(ofallcomponents)resultsinasta

21、ndarddeviationof0.757ml,farexceedingthe0.2mltarget.Also,weseethatthe0.2mltargetfallsoutsideoftheconfidenceintervalforthestandarddeviation.Itlookslikethispumpdesignexhibitstoomuchvariationandneedstobefurtherrefinedbeforeitgoesintoproduction;MonteCarlosimulationwithMinitabletusfindthatoutwithoutincurr

22、ingtheexpenseofmanufacturingandtestingthousandsofprototypes.Lestyouwonderwhetherthesesimulatedresultsholdup,tryityourself!Creatingdifferentsetsofsimulatedrandomdatawillresultinminorvariations,buttheendresultanunacceptableamountofvariationintheflowratewillbeconsistenteverytime.ThatoftheMonteCarlometh

23、od.MonteCarloUsingaDOEResponseEquationWhatifyoudon'tknowwhatequationtouse,oryouaretryingtosimulatetheoutcomeofauniqueprocess?prepares metal parts for electroplating.Anelectronicsmanufacturerhasassignedyoutoimproveitselectrocleaningoperation,whichElectroplatingletsmanufacturerscoatrawmaterialswit

24、halayerofadifferentmetaltoachievedesiredcharacteristics.Platingwillnotadheretoadirtysurface,sothecompanyhasacontinuous-flowelectrocleaningsystemthatconnectstoanautomaticelectroplatingmachine.Aconveyerdipseachpartintoabathwhichsendsvoltagethroughthepart,cleaningit.InadequatecleaningresultsinahighRoot

25、MeanSquareAverageRoughnessvalue,orRMS,andpoorsurfacefinish.ProperlycleanedpartshaveasmoothsurfaceandalowRMS.Tooptimizetheprocess,youcanadjusttwocriticalinputs:voltage(Vdc)andcurrentdensity(ASF).Foryourelectrocleaningmethod,thetypicalengineeringlimitsforVdcare3to12volts.Limitsforcurrentdensityare10to

26、150ampspersquarefoot(ASF).Step1:IdentifytheTransferEquationYoucannotuseanestablishedtextbookformulaforthisprocess,butyoucansetupaResponseSurfaceDOEinMinitabtodeterminethetransferequation.ResponsesurfaceDOEsareoftenusedtooptimizetheresponsebyfindingthebestsettingsfora"vitalfew"controllablef

27、actors.Inthiscase,theresponsewillbethesurfacequalityofpartsaftertheyhavebeencleaned.TocreatearesponsesurfaceexperimentinMinitab,chooseStat>DOE>ResponseSurface>CreateResponseSurfaceDesignBecausewehavetwofactorsvoltage(Vdc)andcurrentdensity(ASF)we'llselectatwo-factorcentralcompositedesign

28、,whichhas13runs.AfterMinitabcreatesyourdesignedexperiment,youneedtoperformyour13experimentalruns,collectthedata,andrecordthesurfaceroughnessofthe13finishedparts.MinitabmakesiteasytoanalyzetheDOEresults,reducethemodel,andcheckassumptionsusingresidualplots.UsingthefinalmodelandMinitab'sresponseopt

29、imizer,youcanfindtheoptimumsettingsforyourvariables.Inthiscase,yousetvoltsto7.74andASFto77.8toobtainaroughnessvalueof39.4.TheresponsesurfaceDOEyieldsthefollowingtransferequationfortheMonteCarlosimulation:Roughness=957.8-189.4(Vdc)-4.81(ASF)+12.26(Vdc2)+0.0309(ASF2)Step2:DefinetheInputParametersNowyo

30、ucansettheparametricdefinitionsforyourMonteCarlosimulationinputs.(Thestandarddeviationsmustbeknownorestimatedbasedonexistingprocessknowledge.)Voltsarenormallydistributedwithameanof7.74Vdcandastandarddeviationof0.14Vdc.AmpsperSquareFoot(ASF)arenormallydistributedwithameanof77.8ASFandastandarddeviatio

31、nof3ASF.Step3:CreateRandomDataWiththeparametersdefined,it'ssimpletocreate100,000rowsofsimulateddataforourtwoinputsusingMinitab'sCalc>RandomData>Normaldialog.Step4:SimulateandAnalyzeProcessOutputSummaryforRMSroughness95% CorrtMenctt IntervalsA-Squared4627.S?<0.00?MW甄蝴0,271Skewness2.01510KyrtositN100000MW上我国wti旭39佃Med on里71。3nj QuvtileMaxiitmoi幅1兆An&oCwling Normality Test95%Ligv闻 for Mea

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论