丹东市高三总复习质量测试一理科数学_第1页
丹东市高三总复习质量测试一理科数学_第2页
丹东市高三总复习质量测试一理科数学_第3页
丹东市高三总复习质量测试一理科数学_第4页
丹东市高三总复习质量测试一理科数学_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2018年丹东市高三总复习质量测试(一)理科数学命题:宋润生 李维斌 朱玉国 审核:宋润生本试卷共23题,共150分,共4页。考试结束后,将本试卷和答题卡一并交回。注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题

2、共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则A或BC或D2若复数为纯虚数,则实数A 1BC1或D或23从3名男生和2名女生共5名同学中抽取2名同学,若抽到了1名女同学,则另1名女同学也被抽到的概率为ABCD4我国古代数学名著九章算术有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织布的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述已知条件,该女子第3天所织布的尺数为1222ABCD5一个几何体的三视图如右图所示,则该几何体的体积为ABCD6如果甲去旅游,那么乙、丙和丁

3、将一起去据此,下列结论正确的是A如果甲没去旅游,那么乙、丙、丁三人中至少有一人没去B如果乙、丙、丁都去旅游,那么甲也去C如果丙没去旅游,那么甲和丁不会都去D如果丁没去旅游,那么乙和丙不会都去开始否是输入输出结束7执行右面的程序框图,若输入a,b,则输出的A3B4C5D68将函数的图象向左平移个单位后,便得到函数的图象,则正数的最小值为ABCD9设,则函数A有极值 B有零点C是奇函数D是增函数10设F为抛物线C:的焦点,直线交C于A,B两点,O为坐标原点,若FAB的面积为,则ABC2D411a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线A

4、C为旋转轴旋转,若直线AB与a成角为60,则AB与b成角为ABCD12已知,是平面向量,其中,且与的夹角为,若,则的最大值为ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线的一条渐近线方程为,则 14的二项展开式的第三项系数为7,则 15若直线是曲线的切线,则实数的值为 16数列满足,则的前20项和为 三、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)已知为的内角,当时,函数取得最大值内角,的对边分别为,(1)求;(2)若,求的面积18

5、(12分)为增进市民的环保意识,某市有关部门面向全体市民进行了一次环保知识的微信问卷测试活动,每位市民仅有一次参与问卷测试机会通过抽样,得到参与问卷测试的1000人的得分数据,制成频率分布直方图如图所示0.01000.00250.00500.01500.02000.02500.022550306070408090100频率组距O得分(1)估计成绩得分落在86,100中的概率(2)设这1000人得分的样本平均值为(i)求(同一组数据用该区间的中点值作代表);(ii)有关部门为参与此次活动的市民赠送20元或10元的随机话费,每次获赠20元或10元的随机话费的概率分别为和得分不低于的可获赠2次随机话

6、费,得分低于的可获赠1次随机话费求一位市民参与这次活动获赠话费的平均估计值CABA1B1C119(12分)如图,斜三棱柱中,为锐角,底面是以为斜边的等腰直角三角形,(1)证明:平面平面;(2)若直线与底面成角为,求二面角的余弦值20(12分)已知动圆过定点且与圆:相切,记动圆圆心的轨迹为曲线(1)求C的方程;(2)设,B,P为C上一点,P不在坐标轴上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:为定值21(12分)设函数(1)若,讨论的单调性;(2)求正实数的值,使得为的一个极值(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22选修4-

7、4:坐标系与参数方程 (10分)在直角坐标系中,曲线的参数方程为(为参数),将上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线以O为极点,x轴正半轴为极轴建立极坐标系(1)求的极坐标方程;(2)设,为上两点,若,求的值23选修4-5:不等式选讲 (10分)已知,证明:(1);(2)理科数学试题参考答案一、选择题1A2A3C4B5D 6C 7A8C9D10B11A12C 二、填空题13314815116220三、解答题17解:(1)3分由题设,因为,故6分(2)根据正弦定理得, ,因为,所以8分由余弦定理得得因此的面积为12分18解:(1)成绩得分落在86,100中的概率为3分(2)(i)

8、这500件产品质量指标值的样本平均数为7分(ii)设得分不低于的概率为8分随机变量可取10,20,30,40;的分布列为话费的平均估计值为12分19解:(1)因为,所以平面因为平面,所以平面平面4分(2)因为平面,在平面内作,垂足为,所以平面因为底面成角为,所以6分因为,所以平面,所以,四边形是菱形因为为锐角,所以,于是是中点8分设,以为坐标原点,为x轴正方向,建立如图所示的空间直角坐标系则,DxABCyzA1B1C1设是平面的一个法向量,则,即,可以取设是平面的一个法向量,则,即,可以取因为,二面角平面角是钝角,故二面角的余弦值是 12分20解:(1)圆的圆心为,半径为4,在圆内,故圆与圆相内切设圆的半径为,则,从而因为,故的轨迹是以,为焦点,4为长轴的椭圆,其方程为6分(2)设,则,即直线PA:,代入得,所以直线PA:,代入得,所以所以综上,为定值412分21解:(1)定义域为,当时,当时,故在单调递增4分(2)因为,所以当时,设,当时,在单调递增当时,故在有唯一实根,且,当时,;当时,;当时,所以当时,取极小值,当时,取极大值令得不符合令,由得设,当时,故在单调递增因为,所以,符合当时,由(1)知,没有极值当时,故在有唯一实根,且当时,;当时,;当时,所以当时,取极大值,当时,取极小值因为,所以不是的一个极值综上,存在正实数,使

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论