版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高等数学基础第一次作业第1章 函数第2章 极限与连续(一) 单项选择题下列各函数对中,(C)中的两个函数相等 A. , B. , C. , D. ,分析:判断函数相等的两个条件(1)对应法则相同(2)定义域相同A、,定义域;,定义域为R 定义域不同,所以函数不相等;B、,对应法则不同,所以函数不相等;C、,定义域为,定义域为 所以两个函数相等D、,定义域为R;,定义域为 定义域不同,所以两函数不等。故选C设函数的定义域为,则函数的图形关于(C)对称 A. 坐标原点 B. 轴 C. 轴 D. 分析:奇函数,关于原点对称偶函数,关于y轴对称与它的反函数关于对称,奇函数与偶函数的前提是定义域关于原点
2、对称设,则所以为偶函数,即图形关于y轴对称故选C下列函数中为奇函数是(B) A. B. C. D. 分析:A、,为偶函数B、,为奇函数 或者x为奇函数,cosx为偶函数,奇偶函数乘积仍为奇函数C、,所以为偶函数D、,非奇非偶函数故选B 下列函数中为基本初等函数是(C) A. B. C. D. 分析:六种基本初等函数(1) (常值)常值函数(2) 为常数幂函数(3) 指数函数(4) 对数函数(5) 三角函数(6) 反三角函数 分段函数不是基本初等函数,故D选项不对对照比较选C下列极限存计算不正确的是(D) A. B. C. D. 分析:A、已知 B、 初等函数在期定义域内是连续的C、 时,是无穷
3、小量,是有界函数, 无穷小量有界函数仍是无穷小量D、,令,则原式故选D当时,变量(C)是无穷小量 A. B. C. D. 分析;,则称为时的无穷小量A、,重要极限B、,无穷大量C、,无穷小量有界函数仍为无穷小量D、故选C若函数在点满足(A),则在点连续。 A. B. 在点的某个邻域内有定义 C. D. 分析:连续的定义:极限存在且等于此点的函数值,则在此点连续即连续的充分必要条件故选A(二)填空题函数的定义域是 分析:求定义域一般遵循的原则(1) 偶次根号下的量(2) 分母的值不等于0(3) 对数符号下量(真值)为正(4) 反三角中反正弦、反余弦符号内的量,绝对值小于等于1(5) 正切符号内的
4、量不能取 然后求满足上述条件的集合的交集,即为定义域要求得求交集 定义域为 已知函数,则 x2-x 分析:法一,令得则则 法二,所以 分析:重要极限,等价式推广则 则若函数,在处连续,则e 分析:分段函数在分段点处连续 所以函数的间断点是 分析:间断点即定义域不存在的点或不连续的点初等函数在其定义域范围内都是连续的分段函数主要考虑分段点的连续性(利用连续的充分必要条件)不等,所以为其间断点若,则当时,称为 时的无穷小量 分析: 所以为时的无穷小量(二) 计算题设函数求:解:,求函数的定义域解:有意义,要求解得 则定义域为在半径为的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个
5、端点在半圆上,试将梯形的面积表示成其高的函数解: A R O h E B C设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD2R直角三角形AOE中,利用勾股定理得则上底故求解:求解:求解:求解: 求解:求解:设函数讨论的连续性,并写出其连续区间解:分别对分段点处讨论连续性 (1)所以,即在处不连续(2)所以即在处连续由(1)(2)得在除点外均连续故的连续区间为高等数学基础第二次作业第3章 导数与微分(一)单项选择题 设且极限存在,则(C) A. B. C. D. cvx 设在可导,则(D) A. B. C. D. 设,则(A) A. B. C. D. 设,则(D) A. B.
6、C. D. 下列结论中正确的是( C ) A. 若在点有极限,则在点可导B. 若在点连续,则在点可导 C. 若在点可导,则在点有极限 D. 若在点有极限,则在点连续 (二)填空题 设函数,则0 设,则 曲线在处的切线斜率是 曲线在处的切线方程是 设,则 设,则(三)计算题 求下列函数的导数: 求下列函数的导数: 在下列方程中,是由方程确定的函数,求: 求下列函数的微分:两边对数得: 求下列函数的二阶导数: (四)证明题 设是可导的奇函数,试证是偶函数证:因为f(x)是奇函数 所以两边导数得:所以是偶函数。高等数学基础第三次作业第4章 导数的应用(一)单项选择题 若函数满足条件(D),则存在,使
7、得 A. 在内连续 B. 在内可导 C. 在内连续且可导 D. 在内连续,在内可导 函数的单调增加区间是(D) A. B. C. D. 函数在区间内满足(A) A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升 函数满足的点,一定是的(C) A. 间断点 B. 极值点 C. 驻点 D. 拐点设在内有连续的二阶导数,若满足( C ),则在取到极小值 A. B. C. D. 设在内有连续的二阶导数,且,则在此区间内是( A ) A. 单调减少且是凸的 B. 单调减少且是凹的 C. 单调增加且是凸的 D. 单调增加且是凹的 (二)填空题 设在内可导,且当时,当时,
8、则是的 极小值 点 若函数在点可导,且是的极值点,则 0 函数的单调减少区间是 函数的单调增加区间是 若函数在内恒有,则在上的最大值是 函数的拐点是 x=0 (三)计算题 求函数的单调区间和极值令X2(2,5)5+极大-极小+y上升27下降0上升列表:极大值:极小值: 求函数在区间内的极值点,并求最大值和最小值令: 试确定函数中的,使函数图形过点和点,且是驻点,是拐点解: 求曲线上的点,使其到点的距离最短解:,d为p到A点的距离,则:圆柱体上底的中心到下底的边沿的距离为,问当底半径与高分别为多少时,圆柱体的体积最大?设园柱体半径为R,高为h,则体积一体积为V的圆柱体,问底半径与高各为多少时表面
9、积最小?设园柱体半径为R,高为h,则体积答:当 时表面积最大。欲做一个底为正方形,容积为62.5立方米的长方体开口容器,怎样做法用料最省?解:设底连长为x,高为h。则:侧面积为:令答:当底连长为5米,高为2.5米时用料最省。(四)证明题当时,证明不等式证:由中值定理得: 当时,证明不等式高等数学基础第四次作业第5章 不定积分第6章 定积分及其应用(一)单项选择题 若的一个原函数是,则(D) A. B. C. D. 下列等式成立的是(D) A B. C. D. 若,则(B) A. B. C. D. (B) A. B. C. D. 若,则(B) A. B. C. D. 由区间上的两条光滑曲线和以及两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋修缮安全合同协议书范本
- 考驾照合同模板
- 脐橙购销合同范本
- 快递店面转让合同快递转让合同大全
- 《环境微生物实验》课件
- 2024年度大型科学仪器共享服务协议
- 财务预算报告范文
- 《MATLAB编程及应用》全套教学课件
- 财务报告分析范文
- 购买树苗合同范本
- 广东开放大学2024秋《形势与政策(专)》形成性考核参考答案
- 《中国心力衰竭诊断和治疗指南2024》解读
- 《我的白鸽》课件-2024-2025学年统编版语文七年级上册
- 2024年高中英语衡水体书法练字字帖
- DL∕T 618-2022 气体绝缘金属封闭开关设备现场交接试验规程
- 2022年10月自考12350儿童发展理论试题及答案含解析
- MOOC 马克思主义基本原理-华东师范大学 中国大学慕课答案
- 施工组织设计(老旧小区改造及配套设施)
- 深圳市福田区大学生实习基地实习协议.doc
- 商品交易信息管理系统
- (完整版)风电开发协议-分散式风电
评论
0/150
提交评论