版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、对数函数的概念与图象对数函数的概念与图象问题提出问题提出 1. 1.用清水漂洗含用清水漂洗含1 1个单位质量污垢的个单位质量污垢的衣服,若每次能洗去污垢的四分之三,衣服,若每次能洗去污垢的四分之三,试写出漂洗次数试写出漂洗次数y y与残留污垢与残留污垢x x的关系式的关系式. . 2. 2. (x0)是函数吗?若是,这是什么类型的函数?14logyx 一般地,函数 y = loga x (a0,且a 1 )叫做对数函数.其中 x是自变量,函数的定义域是(函数的定义域是( 0 , +0 , +). .对数函数的定义:对数函数的定义:注意注意:1):1)对数函数定义的严格形式对数函数定义的严格形式
2、; ;0a. 1a,且,且2)2)对数函数对底数的限制条件:对数函数对底数的限制条件:在在同一坐标系同一坐标系中用描点法画出对数函数中用描点法画出对数函数 的图象。的图象。xyxy212loglog和作图步骤作图步骤列表列表, , 描点描点, , 用平滑曲线连接。用平滑曲线连接。X1/41/2124y=log2x-2-1012列表列表描点描点作作y=log2x图象图象连线连线21-1-21240yx32114列表列表描点描点连线连线21-1-21240yx32114x1/41/2124xy2log -2 -1 0 1 2xy21log这两个函这两个函数的图象数的图象有什么关有什么关系呢?系呢?
3、关于关于x轴对称轴对称 图象特征代数表述探索发现探索发现:认认真观察函数真观察函数y=log2x 的图象填写的图象填写下表下表图象位于y轴右方图象向上、向下无限延伸自左向右看图象逐渐上升21-1-21240y x32114图象特征函数性质图象位于y轴右方图象向上、向下无限延伸自左向右看图象逐渐下降xy21log 探索发现探索发现:认认真观察函数真观察函数 的图象填写的图象填写下表下表211421-1-21240yx3对数函数对数函数 的图象。的图象。xyxy313loglog 和和猜猜猜猜: 21-1-21240yx32114xy2log xy21log xy3log xy31log y X
4、O x =1 (1,0) )1(log ayxay X O x =1 (1,0) )10(log ayxa例1求下列函数的定义域:(1) (2) 讲解范例讲解范例 解 :解 :2log xya由 02x得 0 x函数 2log xya的定义域是0|xx)4(logxya由 04 x得 4x函数 的定义域是)4(logxya4|xx (3)解:由log2x0且x0 xy2log1解得x 1且x0 xy2log1的定义域是的定义域是x x 0 且x 1函数 比较下列各组中,两个值的大小:比较下列各组中,两个值的大小:(1) log23.4与与 log28.5 log23.4 1,函数在区间(函数在
5、区间(0,+) 上是增函数;上是增函数;3.48.5 比较下列各组中,两个值的大小:比较下列各组中,两个值的大小:(2) log 0.3 1.8与与 log 0.3 2.7解:考察函数解:考察函数y=log 0.3 x , a=0.3 1, 函数在区间(函数在区间(0,+)上是减函数;)上是减函数;1.8 log 0.3 2.7 比较下列各组中,两个值的大小:比较下列各组中,两个值的大小: (1) log23.4与与 log28.5 (2) log 0.3 1.8与与 log 0.3 2.7小小结结比较两个比较两个同底同底对数值的大小时对数值的大小时:.观察底数是大于观察底数是大于1还是小于还
6、是小于1; ( a1时为时为增增函数函数0a1时为时为减减函数)函数).比较真数值的大小;比较真数值的大小;.根据单调性得出结果。根据单调性得出结果。注意:注意:若底数不确定,那就要对底数进行分类讨论若底数不确定,那就要对底数进行分类讨论即即0a 1 比较下列各组中,两个值的大小比较下列各组中,两个值的大小:(3) loga5.1与与 loga5.9解解: 若若a1则函数在区间(则函数在区间(0,+)上是增函数;)上是增函数; 5.15.9 loga5.1 loga5.9 若若0a1则函数在区间(则函数在区间(0,+)上是减)上是减函数;函数; 5.1 loga5.9你能口答吗?你能口答吗?变一变还能口答吗?变一变还能口答吗?、5 . 065 . 0log_log21-1-21240yx32114xy2log xy21log xy3log xy31log 规律:在规律:在x轴轴上方图象自左上方图象自左向右底数越来向右底数越来越大!越大!x小结:小结:思考思考1:对数函数具有奇偶性吗?:对数函数具有奇偶性吗? 思考思考2:对数函数存在最大值和最小值吗?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年玻璃制品采购合同
- 2024年物业服务与社区文化活动策划委托合同3篇
- 《背影》课时教案模板
- 拟定财务的个人工作计划大全
- 2024山东基础软件服务市场前景及投资研究报告
- 产科工作计划
- 初中教师年终教学计划五篇
- 幼儿园实习自我总结十篇
- 内勤个人工作计划10篇
- 关于教师一级述职报告3篇
- 2024-2025学年上学期南京小学数学六年级期末模拟试卷
- 河北省保定市定兴县2023-2024学年一年级上学期期末调研数学试题(含答案)
- 2025年三支一扶考试基本能力测验试题及解答参考
- 2024版食源性疾病培训完整课件
- 【MOOC】信号与系统-南京邮电大学 中国大学慕课MOOC答案
- 护理不良事件分析 课件
- 10万吨级泊位工程施工组织设计
- 《Python程序设计》课件-2:变量和数据类型
- 糖尿病相关论文开题报告
- 糖尿病患者健康管理测试试题(三套题-有答案)
- 《住院患者身体约束的护理》团体标准解读课件
评论
0/150
提交评论