乘法公式巩固练习含答案_第1页
乘法公式巩固练习含答案_第2页
乘法公式巩固练习含答案_第3页
乘法公式巩固练习含答案_第4页
乘法公式巩固练习含答案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、【巩固练习】选择题1下列各多项式相乘,可以用平方差公式的有()?-2ab5x5x2abax-y-ax-y-ab-cab-cmng-m-nC.2 个 D.1 个A.4个B.3个2. 若x2kx是完全平方式,则k值是()4A._2B._1C._4D.13. 下面计算-7ab-7-a-b正确的是()?2A. 原式=(7+a+b)7(a+b)=7iab22B. 原式=(7+a+b)7(a+b)=7+iab22C. 原式=(7ab)(7+a+b)=7abj22D. 原式=(7+a)+b(7+a)b=7a-b24. (a+3)(a+9)(a3)的计算结果是().5.A.a+81B.a81C.a81F列式子

2、不能成立的有()个.D.81a22x-yy-xa-2ba-4b2a-bb-aa-b22xyx_y二_xyg-xy1-J1xx2_2xA.1B.2C.36.算20152-20142016的结果是(A.-2B.-1C.0D.1二.填空题D.4(2015春?开江县期末)计)7.多项式x28x+k是一个完全平方式,则k=1218.已知a+=5,则a+的结果是aa229.若把代数式X2-2X-3化为x-mk的形式,其中m,k为常数,贝Um+k=10. (2015春?深圳期末)若A=(2+1)(22+1)(24+1)(2*+1)+1,则A的末位数字是11. 对于任意的正整数n,能整除代数式3n)13n-1

3、-3-n3)n的最小正整数是12. 如果(2a+2b+1)(2a+2b_1)=63,那么a+b的值为.三.解答题13. 计算下列各值.222222(1) 1012992(2)m2m2m24(3) (ab-c)(a-bc)(4)(3x-2y1)214. (2015春?成华区月考)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为神秘数”女口:4=22-02,12=42-22,20=62-42,因此4、12、20都是这种神秘数”(1) 28和2012这两个数是神秘数”吗?试说明理由;(2) 试说明神秘数能被4整除;(3) 两个连续奇数的平方差是神秘数吗?试说明理由.2【答案与解析】-.

4、选择题【答案】B;1.【解析】,可用平方差公式2.【答案】B*;221【解x2二kx?-,所以k=1.415.已知:a-b=6,abc-a9=0,求abc的值.4-81.3 .【答4 .案】【答案】【解析】【答5 .案】【解C析】【答6 .案】【解析】C;C;(a+3)(a2+9)(a-3)=(a2-9)(a29)=aB;,不成立.解:原式=20152-(2015-1)X(2015+1)=20152-故?9()()(20152-1)=20152-2015选D.2+1=1,7.8.填空题【答【解【答16;x2-8xk=x2-24x42,二k=16.23;【解(a1)2-25,a2122-25,a

5、212-23.a9.【答案】一3;【解析】x-2x-3=x-2x1-1-3二6;解10.【答2案】(2+1)(2+1)(2+1)(2+1)8+18二(2-二(2-二(2-1)(2+1)(2+1)(2+1)(2+1)+1,22481)(2+1)(2+1)(2+1)+1,4481)(2+1)(2+1)+1,88=(2-1)(2+1)+1,=(216-1)(216+1)+1,=2-1+1因为232的末位数字是6,所以原式末位数字是6.故答案为:6.10;11 .【答案】2【解析】利用平方差公式化简得10n-1,故能被10整除.12 .【答案】土4;2【解析】2a2b12a2b-1=2a2b-1=63

6、,2a2b=8,ab=4.三.解答题13.【解析】解:(1)原式=100(2)(3)221-100-1=10000200原式=m2-4原式=a-:;:b-c11000八200m24m4-16a-b-c2bc1=20002m8-32m4256222(4)原式=(3x-2y1)=3x2y1-23x2y23x-22y-9x24y2-12xy6x-4y114.【解析】解:(1)是,理由如下:2222?/28=8-6,2012=504-502,28是“神秘数”;2012是“神秘数”;(2) “神秘数”是4的倍数.理由如下:22(2k+2)-(2k)=(2k+2+2k)(2k+2-2k)=2(4k+2)=4(2k+1),?“神秘数”是4的倍数;(3) 设两个连续的奇数为:2k+1,2k-1,贝U22(2k+1)2-(2k-1)2=8k,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是神秘

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论