等差数列(教案+例题+习题)_第1页
等差数列(教案+例题+习题)_第2页
等差数列(教案+例题+习题)_第3页
等差数列(教案+例题+习题)_第4页
等差数列(教案+例题+习题)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、等差数列1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集1,2,3,n)的特殊函数,数列的通项公式也就是相应函数的解析式。例1根据数列前4项,写出它的通项公式:(1)1,3,5,7;(2),;(3),。解析:(1)=2; (2)= ; (3)= 。点评:每一项序号与这一项的对应关系可看成是一个序号到另一个数集的对应关系,这对考生的归纳推理能力有较高的要求。如(1)已知,则在数列的最大项为_ ;(2)数列的通项为,其中均为正数,则与的大小关系为_;(3)已知数列中,且是递增数列,求实数的取值范围;2、等差数列的判断方法:定义法或。例2设Sn是数列an的前n项和,且Sn=n2,则

2、an是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列答案:B;解法一:an=an=2n1(nN)又an+1an=2为常数,常数an是等差数列,但不是等比数列.解法二:如果一个数列的和是一个没有常数项的关于n的二次函数,则这个数列一定是等差数列。点评:本题主要考查等差数列、等比数列的概念和基本知识,以及灵活运用递推式an=SnSn1的推理能力.但不要忽略a1,解法一紧扣定义,解法二较为灵活练一练:设是等差数列,求证:以bn= 为通项公式的数列为等差数列。3、等差数列的通项:或。4、等差数列的前和:,。例3:等差数列an的前

3、n项和记为Sn,若a2a4a15的值是一个确定的常数,则数列an中也为常数的项是()AS7BS8 CS13 DS15解析:设a2a4a15p(常数), 3a118dp,解a7p.S1313a7p. 答案:C例4等差数列an中,已知a1,a2a54,an33,则n为()A48 B49 C50 D51解析:a2a52a15d4,则由a1得d,令an33(n1)×,可解得n50.故选C.答案:C如(1)等差数列中,则通项;(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是_ ;例5:设Sn是等差数列an的前n项和,a128,S99,则S16_.解析:S99a59, a

4、51,S168(a5a12)72. 答案:72例6:已知数列an为等差数列,若<1,且它们的前n项和Sn有最大值,则使Sn>0的n的最大值为()A11 B19 C20 D21解析:<1,且Sn有最大值, a10>0,a11<0,且a10a11<0,S1919·a10>0, S2010(a10a11)<0.所以使得Sn>0的n的最大值为19,故选B. 答案:B如(1)数列 中,前n项和,则, ;(2)已知数列 的前n项和,求数列的前项和.5、等差中项:若成等差数列,则A叫做与的等差中项,且。提醒:(1)等差数列的通项公式及前和公式中

5、,涉及到5个元素:、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为,(公差为);偶数个数成等差,可设为,,(公差为2)6.等差数列的性质:(1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0.(2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。(3)当时,则有,特别地,当时,则有.(4)若、是等差数列,则、 (、是非零常数)、 ,也成等差数列,而成等比数列;若是等比数列,且,则是等差数列. 练一练:等差数列的前n项和为2

6、5,前2n项和为100,则它的前3n和为 (5)在等差数列中,当项数为偶数时,;项数为奇数时,(这里即);。练一练:项数为奇数的等差数列中,奇数项和为80,偶数项和为75,求此数列的中间项与项数.(6)若等差数列、的前和分别为、,且,则.练一练:设与是两个等差数列,它们的前项和分别为和,若,那么_;(7)“首正”的递减等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和。法一:由不等式组确定出前多少项为非负(或非正);法二:因等差数列前项是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。上述两种方法是运用了哪种数学思想?(函数思

7、想),由此你能求一般数列中的最大或最小项吗?练一练:等差数列中,问此数列前多少项和最大?并求此最大值;例7(1)设an(nN*)是等差数列,Sn是其前n项的和,且S5S6,S6S7S8,则下列结论错误的是( )A.d0B.a70 C.S9S5D.S6与S7均为Sn的最大值(2)等差数列an的前m项和为30,前2m项和为100,则它的前3m项和为( )A.130 B.170 C.210 D.260解析:(1)答案:C; 由S5<S6得a1+a2+a3+a5<a1+a2+a5+a6,a6>0,又S6=S7,a1+a2+a6=a1+a2+a6+a7,a7=0,由S7>S8,得

8、a8<0,而C选项S9>S5,即a6+a7+a8+a9>02(a7+a8)>0,由题设a7=0,a8<0,显然C选项是错误的。(2)答案:C解法一:由题意得方程组,视m为已知数,解得,。解法二:设前m项的和为b1,第m+1到2m项之和为b2,第2m+1到3m项之和为b3,则b1,b2,b3也成等差数列。于是b1=30,b2=10030=70,公差d=7030=40。b3=b2+d=70+40=110前3m项之和S3m=b1+b2+b3=210.解法三:取m=1,则a1=S1=30,a2=S2S1=70,从而d=a2a1=40。于是a3=a2+d=70+40=110

9、.S3=a1+a2+a3=210。等差数列课后练习一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内。1若ab,数列a,x1,x 2 ,b和数列a,y1 ,y2 ,b都是等差数列,则 ( ) A B C1 D2在等差数列中,公差1,8,则 ( )A40B45C50D553等差数列的前三项为,则这个数列的通项公式为 ( )A B C D 4在等差数列,则在Sn中最大的负数为 ( )AS17BS18CS19DS205已知等差数列的首项为31,若此数列从第16项开始小于1,则此数列的公差d 的取值范围是 ( ) A(,2) B, 2 C(2, +) D

10、( ,2)6在等差数列中,若,则n的值为 ( )A18 B17C16D157等差数列中,等于( )A205B215C1221D208已知某数列前项之和为,且前个偶数项的和为,则前个奇数项的和为 ABCD 9一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146所有项的和为234,则它的第七项等于( )A22B21C19D1810等差数列中,0,若1且,则的值是 ( )A 10 B 19 C20 D38二、填空题:请把答案填在题中横线上。11已知是等差数列,且 则k= .12在ABC中,A,B,C成等差数列,则 . 13在等差数列中,若,则 .14是等差数列的前n项和,(n5,),

11、 =336,则n的值是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.15己知为等差数列,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求: (1)原数列的第12项是新数列的第几项? (2)新数列的第29项是原数列的第几项?16数列是首项为23,公差为整数的等差数列,且第六项为正,第七项为负。 (1)求数列公差;(2)求前项和的最大值;(3)当时,求的最大值。17设等差数列的前项的和为S n ,且S 4 =62, S 6 =75,求: (1)的通项公式a n 及前项的和S n ; (2)|a 1 |+|a 2 |+|a 3 |+|a 14 |.18已知数列,首项a

12、 1 =3且2a n+1=S n ·S n1 (n2). (1)求证:是等差数列,并求公差;(2)求a n 的通项公式; (3)数列an 中是否存在自然数k0,使得当自然数kk 0时使不等式a k>a k+1对任意大于等于k的自然数都成立,若存在求出最小的k值,否则请说明理由.一、 选择题:ABCCB DABDA二、 填空题:118; 12; 1324; 1421.三、 解答题:15分析:应找到原数列的第n项是新数列的第几项,即找出新、旧数列的对应关系。解:设新数列为即3=2+4d, 即原数列的第n项为新数列的第4n3项(1)当n=12时,4n3=4×123=45,故原数列的第12项为新数列的第45项;(2)由4n3=29,得n=8,故新数列的第29项是原数列的第8项。说明:一般地,在公差为d的等差数列每相邻两项之间插入m个数,构成一个新的等差数列,则新数列的公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论