实验五异方差模型的检验_第1页
实验五异方差模型的检验_第2页
实验五异方差模型的检验_第3页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实验五异方差模型的检验HUASHANG COLLEGEGUANGDONG UNIVERSITV OF FINANCE & ECONOMICS课程名称:计量经济学实验项目:实验五 异方差模型的检验和处理实验类型:综合性口设计性口 验证性专业班别:12国姓 名:学 号:412实验课室:厚德楼A404指导教师:实验日期:2015年5月28日广东商学院华商学院教务处制一、头验项目训练方案小组合作:是j否小组成员:无实验目的:掌握异方差模型的检验和处理方法实验场地及仪器、设备和材料实验室:普通配置的计算机,Eviews软件及常用办公软件。实验训练内容(包括实验原理和操作步骤):【实验原理】异方差

2、的检验:图形检验法、Goldfeld-Quanadt检验法、White检验法、Glejser检验法;异方差的处理:模型变换法、加权最小二乘法 (WLS)。【实验步骤】本实验考虑三个模型:【1】广东省财政支出CZ对财政收入CS勺回归模型;(数据见附表1:附表1-广东省数据)【2】广东省固定资产折旧ZJ对国内生产总值GDP和时间T的二元回归模型;(数据见附表1:附表1-广 东省数据)【3】广东省各市城镇居民消费支出Y对人均收入X的回归模型。(数据见附表2:附表2-广东省2005年数 据)(一)异方差的检验1. 图形检验法分别用相关分析图和残差散点图检验模型【1】、模型【2】和模型【3】是否存在异方

3、差。注:相关分析图是作应变量对自变量的散点图(亦可作模型残差对自变量的散点图); 残差散点图是作残差的平方对自变量的散点图 模型【2】中作图取自变量为GDPS来作图。模型【1】相关分析图2,4002,0001,600C 1,2008004005001,0001,5002,000CS残差散点图20,000 -16,00012,000 1E8,000 -4,000 -. 0 M11105001,0001,5002,000CS模型【2】相关分析图4,0003,500 _3,000 _2,500 _Z 2,000 ,*»1,500 _»1,000 _V500*0C5,00010,0

4、0015,00020,00025,000GDPS残差散点图GDPS模型【3】相关分析图24,00020,000 .« *16,000 .Y12,000 .甲8,000 -VV 八 n'4,000 _5,00010,00015,00020,00025,00030,000X残差散点图12,000,00010,000,000 -8,000,000 -E 6,000,000 -4,000,000-2,000,000 -*t* *W”I-|30,0005,00010,00015,00020,00025,000【思考】相关分析图和残差散点图的不同点是什么?*在模型【2】中,自变量有两个,

5、有无其他处理方法?尝试做 出来。(请对得到的图表进行处理,以上在一页内)2. Goldfeld-Quanadt 检验法用Goldfeld-Quanadt检验法检验 模型【3】是否存在异方差。注:Goldfeld-Quanadt检验法的步骤为:排序:删除观察值中间的约1/4的, 并将剩下的数据分为两个部分。构造 F统计量:分别对上述两 个部分的观察值求回归模型,由此得到的两个部分的残差平方为2eii和e2i。e2为较大的残差平方和,e2i为较小的残差平方和。算统计量F*二F(g k,2 k)。判断:给定显著性水平0.05,e2i227查F分布表得临界值S 4 k)()。如果F* F(n c) k

6、 (n c) k)(),则认为模型(2 1 2 ) ( 2 , 2 )中的随机误差存在异方差。(详见课本135页)将实验中重要的结果摘录下来,附在本页。obsXY1 7021.94 4632.6899999999992 7220.446317.033 7299.256463.374 8241.2099999999996350.385 8842.846757.026 9214.67294.937 9867.367669.848 10097.27476.659 10908.368113.6410 11944.088296.4311 19505.66229.171215762.7712651.951

7、317680.114485.611418287.2414468.241518907.7314323.661621015.0318550.561722881.821767.781828665.2521188.84YMethod: Least SquaDate: 06/07/15iresTime:11:18Sample: 1 7Included observations: 7VariableCoefficientStd. Errort-StatisticProb.X0.7230770.2183863.3110030.0212C536.88741814.2540.2959270.7792R-squa

8、red0.686771Mean dependent var6497.894Adjusted R-squared0.624125S.D. dependent var966.9988S.E. of regression592.8541Akaike info criterion15.84273Sum squared resid1757380.Schwarz criterion15.82728Log likelihood-53.44956Hannan-Quinn criter.15.65172F-statistic10.96274Durbin-Watson stat1.761325Prob(F-sta

9、tistic)0.021217Dependent Variable: YMethod: Least SquaresDate: 06/07/15Time:11:20Sample: 12 18Included observations: 7VariableCoefficientStd. Errort-StatisticProb.X0.7592910.1778984.2681250.0080C1243.7433707.2380.3354900.7509R-squared0.784640Mean dependent var16776.66Adjusted R-squared0.741567S.D. d

10、ependent var3677.261S.E. of regression1869.382Akaike info criterion18.13956Sum squared resid17472943Schwarz criterion18.12411Log likelihood-61.48846Hannan-Quinn criter.17.94855F-statistic18.21689Durbin-Watson stat2.037081Prob(F-statistic)0.007953有上图可知e; =17472943,<=1757380 F=e1 /efi =17472943/175

11、7380=9.94260945在0.05下,上式中分(5,5) =5.05,子、分母的自由度均为 5,查F分布表得临界值F0.05 (5,5) =5.05,因为F=9.94260945> F0.05所以拒接原假设,说明模型存在异方差。(请对得到的图表进行处理,以上在一页内)3. White检验法分别用White检验法检验模型【1】、模型【2】和模型【3】是否存在异方差。Eviews操作:先做模型,选 view/Residual Tests/ Heteroskedasticity Tests/White/(勾选 cross terms)。摘录 主要结果附在本页内。模型【1】Heterosk

12、edasticity Test: White4.F-statistic40866Obs*R-squared7.932189Prob. F(2,25)Prob. Chi-Square(2)0.01560.0189Scaled explained SS14.57723Prob. Chi-Square(2)0.0007Test Equation:Dependent Variable: RESIDA2Method: Least SquaresDate: 06/07/15Time: 12:44Sample: 1978 2005Included observations: 28VariableCoeffi

13、cientStd. Errort-StatisticProb.-879.85131125.376-0.7818290.4417CS12.937204.6513282.7813980.0101CSA2-0.0066200.002964-2.2335610.0347R-squared0.283292Mean dependent var1940.891Adjusted R-squared10.225956S.D. dependent var4080.739S.E. of regression3590.225Akaike info criterion19.31077Sum squared residL

14、og likelihood3.22E+08Schwarz criterionHannan-Quinn criter.19.45351-267.350819.35441F-statisticProb(F-statistic)4.9408660.015552Durbin-Watson stat2.144291模型【2】Heteroskedasticity Test: White1.993171Prob. F(5,22)8.729438Prob. Chi-Square(5)14.67857Prob. Chi-Square(5)0.11950.12040.0118F-statisticObs*R-sq

15、uaredScaled explained SSTest Equation:Dependent Variable: RESIDA2Method: Least SquaresDate: 06/07/15Time:12:47Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.C1837.8986243.7010.2943600.7712GDPS-3.3950935.407361-0.6278650.5366GDPSA2-9.08E-050.000185-0.4895370.62

16、93GDPS*T0.1603000.3151760.5086040.6161T-491.56141982.891-0.2479010.8065TA249.08543152.98750.3208460.7514R-squared0.311766Mean dependent var3461.910Adjusted R-squared0.155349S.D. dependent var7240.935S.E. of regression6654.775Akaike info criterion20.63147Sum squared resid9.74E+08Schwarz criterion20.9

17、1694Log likelihood-282.8405Hannan-Quinn criter.20.71874F-statistic1.993171Durbin-Watson stat1.971537Prob(F-statistic)0.119510模型【3】Heteroskedasticity Test: WhiteF-statistic7.670826Prob. F(2,15)0.0051Obs*R-squared9.101341Prob. Chi-Square(2)0.0106Scaled explained SS14.09286Prob. Chi-Square(2)0.0009Test

18、 Equation:Dependent Variable: RESIDA2Method: Least SquaresDate: 06/07/15Time: 12:51Sample: 1 18Included observations: 18VariableCoefficientStd. Errort-StatisticProb.C1865425.2810916.0.6636360.5170X-354.7917388.1454-0.9140690.3751XA20.0188100.0116861.6095970.1283R-squared0.505630Mean dependent var123

19、2693.Adjusted R-squared10.439714S.D. dependent var2511199.S.E. of regression1879689.Akaike info criterion31.88212Sum squared resid5.30E+13Schwarz criterion32.03052Log likelihood-283.9391Hannan-Quinn criter.31.90258F-statistic7.670826Durbin-Watson stat2.010913Prob(F-statistic)0.005074(请对得到的图表进行处理,以上在

20、一页内)4. Glejser检验法用Glejser检验法检验模型【11是否存在异方差。作回归。检验分别用残差的绝对值对自变量的一次项CSi、二次项CS2,开根号项(西和倒数项1/CSi异方差是否存在,并选定异方差的最优形式。 摘录主要结果附在本页内。、一次项CSi回归Method: Least SquaDate: 06/07/15Sample: 1978 2005 Included observatioiresTime: 13:17ns: 28VariableCoefficientStd. Errort-StatisticProb.CS0.0292360.0122792.3809470.024

21、9C14.159918.2594921.7143800.0984R-squared0.179006Mean dependent var27.30288Adjusted R-squared0.147429S.D. dependent var35.20964S.E. of regression32.51074Akaike info criterion9.869767Sum squared resid27480.66Schwarz criterion9.964925Log likelihood-136.1767Hannan-Quinn criter.9.898858F-statistic5.6689

22、11Durbin-Watson stat1.339465Prob(F-statistic)0.024881二、去掉常数项再回归Dependent Variable: E1Method: Least SquaresDate: 06/07/15 Time: 13:22Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.CS0.0433040.0094564.5794730.0001R-squared0.086198 Mean dependent var27.30288Adjus

23、ted R-squared0.086198S.D. dependent var35.20964S.E. of regression33.65794Akaike info criterion9.905436Sum squared resid30587.14Schwarz criterion9.953015Log likelihood-137.6761Hannan-Quinn criter.9.919981Durbin-Watson stat1.209310三、二次项CS2回归Dependent Variable: E1Method: Least SquaresDate: 06/07/15Time

24、: 13:19Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.CSA21.11E-058.36E-061.3222070.1976C22.302367.5752862.9440940.0067R-squared0.063003Mean dependent var27.30288Adjusted R-squared0.026965S.D. dependent var35.20964S.E. of regression34.73168Akaike info criterio

25、n10.00193Sum squared resid31363.53Schwarz criterion10.09709Log likelihood-138.0270Hannan-Quinn criter.10.03102F-statistic1.748231Durbin-Watson stat1.203183Prob(F-statistic)0.197614四、开根号项届回归Dependent Variable: E1Method: Least SquaresDate: 06/07/15 Time: 13:24Sample: 1978 2005Included observations: 28

26、VariableCoefficientStd. Errort-StatisticProb.CSA(1/2)1.5372330.2690365.7138480.0000R-squared0.265081Mean dependent var27.30288Adjusted R-squared0.265081S.D. dependent var35.20964S.E. of regression30.18432Akaike info criterion9.687583Sum squared resid24599.52Schwarz criterion9.735162Log likelihood-13

27、4.6262Hannan-Quinn criter.9.702128Durbin-Watson stat1.471849五、倒数项1/CSi作回归Dependent Variable: E1Method: Least SquaresDate: 06/07/15Time:13:26Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.CSA(-1)-2029.779607.7392-3.3398840.0025C46.202298.0122115.7664840.0000R-s

28、quared0.300226Mean dependent var27.30288Adjusted R-squared0.273311S.D. dependent var35.20964S.E. of regression30.01483Akaike info criterion9.710009Sum squared resid23423.14Schwarz criterion9.805167Log likelihood-133.9401Hannan-Quinn criter.9.739100F-statistic11.15483Durbin-Watson stat1.566457Prob(F-

29、statistic)0.002542从四个回归的结果看冷第二个不显著,其他三个显著,比较这三个回归,还是选择第三个,方程为ABS(RESID)=1.53723330222*CSA(1/2)即异方差的形式为:a 2(1.537233* (CSA(1/2)2=2.36085CSi也即异方差的形式为:a2= a 2CS就把这个形式确定为异方差的形式。对ZJ与GDPS T回归的Glejser检验可以类似进行检验,消费支出与可支配收入回归的 Glejser检验可以类似进行检验。通过前面实验的异方差模型的检验,发现根据广东数扌居CZ对CS的回归,ZJ对GDPS T的回归,消费支出与可支配收'入回归

30、都存在异方差,现在分别对它们进行处理。加权最小二乘法成为处理异方差模型的标准方法,再 Eviews中使用WL异方差,关键是权数的选取。(请对得到的图表进行处理,以上在一页内)(二)异方差的处理1模型【1】中CZ对CS回归异方差的处理已经S来消除2CSi,选取权数,使用加权最小二乘法处理异方差 并检验处理异方差之后模型是否仍存在异方差,若仍然存在异方差,请继续处理异方差。已知CZ对CS回归异方差的形式为:附在本页内。Dependent Variable: CZMethod: Least SquaresDate: 06/07/15Time: 13:32摘录主要结果Sample: 1978 2005

31、Included observations: 28Weighting series: 1/(CSA(1/2)VariableCoefficientStd. Errort-StatisticProb.CS1.2756770.01940665.736280.0000-21.243654.264097-4.9819800.0000Weighted StatisticsR-squared0.994019 Mean dependent var254.4606Adjusted R-squared0.993789 S.D. dependent var189.1988S.E. of regression22.

32、86683 Akaike info criterion9.166001Sum squared resid13595.19 Schwarz criterion9.261159Log likelihood-126.3240 Hannan-Quinn criter.9.195092F-statistic4321.259 Durbin-Watson stat1.550317Prob(F-statistic)0.000000Unweighted StatisticsR-squaredAdjusted R-squaredS.E. of regressionDurbin-Watson stat0.99527

33、6 Mean dependent var0.995095S.D. dependent var45.74872Sum squared resid1.545575552.2429653.188154416.57回归方程为CZ=1.2756769685*CS-21.2436468305它与存在异方差的如下方程估计有所不同。CZ=1.27887365026*-CS-22.6807299594至于经过加权最小二乘法估计的残差项是否存在异方差,同 以用本实验的异方差模型的检验去检验,但是若在eviews中使用wls命令估计的序列resed不能用俩检验,因为产生的序列 是非加权方式的残差。要想检验只能自己进

34、行同方差变换, 回归以后再检验了样可resid然后进行同方差行变换,然后回归实际上就是CZ/(CSA(1/2)对1/(CSA(1/2) 和CS/(CSA(1/2)回归,结果如下:Dependent Variable: CZ/(CSA(1/2)Method: Least SquaresDate: 06/07/15 Time: 13:39Sample: 1978 2005Included observations: 28VariableCoefficient Std. Error t-StatisticProb.1/(CSA(1/2)-21.243654.264097-4.9819800.0000

35、CS/(CSA(1/2)1.2756770.01940665.736280.0000R-squared0.985934Adjusted R-squared0.985393S.E. of regression1.899444Sum squared resid93.80503Log likelihood-56.65647Mean dependent var21.13688S.D. dependent var15.71588Akaike info criterion4.189748Schwarz criterion4.284906Hannan-Quinn criter.4.218839Durbin-

36、Watson stat1.550317观察其残差趋势图Residual Actual Fitted还是存在异方差,再改为CZ/CS对1/CS和回归,如果如下Dependent Variable: CZ/CSMethod: Least SquaresDate: 06/07/15 Time: 13:42Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.1/CS-19.828602.064540-9.6043680.0000C1.2625010.02721846.384560.

37、0000R-squared0.780115Mean dependent var1.077876Adjusted R-squared10.771658S.D. dependent var0.213378S.E. of regression0.101963Akaike info criterion-1.659667Sum squared resid0.270307Schwarz criterion-1.564510-1.630577Log likelihood25.23534Hannan-Quinncriter.F-statistic92.24388Durbin-Watsonstat1.61343

38、6Prob(F-statistic)0.000000观察其残差趋势图 应该不存在异方差了,其方程为CZ/CS=-19.8286033657*1/CS+1.26250140483变换为原方程为 CZ=-19.8286033657+1.26250140483*CS(请对得到的图表进行处理,以上在两页内) 2模型【2】中ZJ对GDPS和T回归异方差的处理3乘法处理异摘录主要结果已知ZJ对GDPS和T回归异方差的形式为:i22 GDPSi 4,选取权数,使用加权最小方差。并检验处理异方差之后模型是否仍存在异方差,若仍然存在异方差,请继续处理异方差。 附在本页内。Dependent Variable:

39、ZJMethod: Least SquaresDate: 06/07/15 Time: 13:46Sample: 1978 2005Included observations: 28Weighting series: 1/(GDPSA(3/8)VariableCoefficient Std. Error t-StatisticProb.GDPS0.1669950.00256565.100680.0000T-4.3536850.881296-4.9400930.0000Weighted StatisticsR-squared0.997009Mean dependent var418.9342Ad

40、justed R-squared10.996894S.D. dependent var382.1762S.E. of regression29.59878Akaike info criterion9.682092Sum squared resid22778.28Schwarz criterion9.777250Log likelihood-133.5493Hannan-Quinn criter.9.711183Durbin-Watson stat0.668750Unweighted StatisticsR-squared0.996289Mean dependent var846.0661Adj

41、usted R-squared10.996146S.D. dependent var1014.824S.E. of regression63.00261Sum squared resid103202.6Durbin-Watson stat0.754208回归方程为 它与存在异方差时的如下方程估计也有所不同。进行同方差性变换,然后回归实际上就是ZJ/(GDPSA(8/3)对GDPS/(GDPSA(8/3)和 T/(GDPSA(8/3)回归,结果如下:Dependent Variable: ZJ/(GDPSA(3/8)Method: Least SquaresDate: 06/07/15 Time

42、: 13:50Sample: 1978 2005Included observations: 28VariableGDPS/(GDPSA(3/8)T/(GDPSA(3/8)Coefficient Std. Error t-StatisticProb.0.1669950.00256565.100680.0000R-squaredAdjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat0.994224Mean dependent var27.595290.994002S.D.

43、dependent var25.174031.949678Akaike info criterion4.24195598.83235Schwarz criterion4.337112-57.38737Hannan-Quinn criter.4.2710450.668750-4.3536850.881296-4.9400930.0000观测其残差趋势图Residual Actual Fitted可能还存在异方差,再改为ZJ/GDPS对C和T/GDPS回归,结果 如下:Dependent Variable: ZJ/GDPSMethod: Least SquaDate: 06/07/15Sample

44、: 1978 2005 Included observatioiresTime: 13:52ns: 28VariableCoefficientStd. Errort-StatisticProb.C0.1619500.00346146.793580.0000T/GDPS-3.7265040.399838-9.3200440.0000R-squared0.769633Mean dependent var0.135596Adjusted R-squared0.760772S.D. dependent var0.021590S.E. of regression0.010560Akaike info c

45、riterion-6.194729Sum squared resid0.002899Schwarz criterion-6.099572Log likelihood88.72621Hannan-Quinn criter.-6.165638F-statistic86.86322Durbin-Watson stat0.439676Prob(F-statistic)0.000000观测其残差趋势图应该不存在异方差了,其方程为变换为原方程(请对得至H的图表进行处理,以上在两页内 )3.模型【3】中消费支出Y对可支配收入X回归异方差的处理4已知丫对X回归异方差的形式为:i22 Xi 3,选取权数,使用加

46、权最小二乘法处理异方差。并检验处理异方差之后模型是否仍存在异方差,若仍然存在异方差,请继续处理异方差。摘录主要结果附在本页内。Dependent Variable: YMethod: Least SquaresDate: 06/07/15 Time: 13:56Sample: 1 18Included observations: 18Weighting series: 1/XA(2/3)VariableCoefficientStd. Errort-StatisticProb.0.0000X0.7951570.01725246.09012Weighted StatisticsR-squared0

47、.954867Mean dependent var9599.510Adjusted R-squared0.954867S.D. dependent var1867.615S.E. of regression895.7229Akaike info criterion16.48709Sum squared resid13639432Schwarz criterion16.53656Log likelihood-147.3838Hannan-Quinn criter.16.49391Durbin-Watson stat1.472431Unweighted StatisticsR-squared0.9

48、52547Mean dependent var10906.35Adjusted R-squared0.952547S.D. dependent var5381.587S.E. of regression1172.315Sum squared resid23363462Durbin-Watson stat1.419465它与存在异方差时如下方程估计明显不同Y=0.804208453455*X进行同方差性变换,然后回归实际上就是Y/(XA(21/3)和X/(XA(2/3)回归,结果如下:Dependent Variable: Y/(XA(2/3)Method: Least SquaresDate: 06/07/15Time:13:59Sample: 1 18Included observations: 18VariableCoefficientStd. Errort-StatisticProb.1/(XA(2/3)-495.5562520.4173-0.9522280.3551X/(XA(2/3)0.8337080.0440

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论