版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、新课标人教A版高中数学必修五典题精讲3.4根本不等式典题精讲例110x,求函数y=x(1-3x)的最大值;2求函数y=x+的值域.思路分析:1由极值定理,可知需构造某个和为定值,可考虑把括号内外x的系数变成互为相反数;2中,未指出x0,因而不能直接使用根本不等式,需分x0与x0讨论.1解法一:0x,1-3x0.y=x(1-3x)= ·3x(1-3x)2=,当且仅当3x=1-3x,即x=时,等号成立.x=时,函数取得最大值.解法二:0x,-x0.y=x(1-3x)=3x(-x)32=,当且仅当x=-x,即x=时,等号成立.x=时,函数取得最大值.2解:当x0时,由根本不等式,得y=x+
2、2=2,当且仅当x=1时,等号成立.当x0时,y=x+=-(-x)+.-x0,(-x)+2,当且仅当-x=,即x=-1时,等号成立.y=x+-2.综上,可知函数y=x+的值域为(-,-22,+).绿色通道:利用根本不等式求积的最大值,关键是构造和为定值,为使根本不等式成立创造条件,同时要注意等号成立的条件是否具备.变式训练1当x-1时,求f(x)=x+的最小值.思路分析:x-1x+10,变x=x+1-1时x+1与的积为常数.解:x-1,x+10.f(x)=x+=x+1+-12-1=1.当且仅当x+1=,即x=0时,取得等号.f(x)min=1.变式训练2求函数y=的最小值.思路分析:从函数解析
3、式的结构来看,它与根本不等式结构相差太大,而且利用前面求最值的方法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开.解:令t=x2+1,那么t1且x2=t-1.y=.t1,t+2=2,当且仅当t=,即t=1时,等号成立.当x=0时,函数取得最小值3.例2x0,y0,且+=1,求x+y的最小值.思路分析:要求x+y的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会.解法一:利用“1的代换,+=1,x+y=(x+y)·(+)=10+.x0,y0,2=6.当且仅当,即y=3x时,取等号.又+=1,x=4,y=12.
4、当x=4,y=12时,x+y取得最小值16.解法二:由+=1,得x=.x0,y0,y9.x+y=+y=y+=y+1=(y-9)+10.y9,y-90.2=6.当且仅当y-9=,即y=12时,取得等号,此时x=4.当x=4,y=12时,x+y取得最小值16.解法三:由+=1,得y+9x=xy,(x-1)(y-9)=9.x+y=10+(x-1)+(y-9)10+2=16,当且仅当x-1=y-9时取得等号.又+=1,x=4,y=12.当x=4,y=12时,x+y取得最小值16.绿色通道:此题给出了三种解法,都用到了根本不等式,且都对式子进行了变形,配凑出根本不等式满足的条件,这是经常需要使用的方法,
5、要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另外一个变量的范围的影响.黑色陷阱:此题容易犯这样的错误:+2,即1,6.x+y22×6=12.x+y的最小值是12.产生不同结果的原因是不等式等号成立的条件是=,不等式等号成立的条件是x=y.在同一个题目中连续运用了两次根本不等式,但是两个根本不等式等号成立的条件不同,会导致错误结论.变式训练正数a,b,x,y满足a+b=10,=1,x+y的最小值为18,求a,b的值.思路分析:此题属于“1的代换问题.解:x+y=(x+y)()=a+b=10+.x,y0,a,b0,x+y10+2=18,
6、即=4.又a+b=10,或例3求f(x)=3+lgx+的最小值0x1.思路分析:0x1,lgx0,0不满足各项必须是正数这一条件,不能直接应用根本不等式,正确的处理方法是加上负号变正数.解:0x1,lgx0,0.-0.(-lgx)+(-)2=4.lgx+-4.f(x)=3+lgx+3-4=-1.当且仅当lgx=,即x=时取得等号.那么有f(x)=3+lgx+ (0x1)的最小值为-1.黑色陷阱:此题容易忽略0x1这一个条件.变式训练1x,求函数y=4x-2+的最大值.思路分析:求和的最值,应凑积为定值.要注意条件x,那么4x-50.解:x,4x-50.y=4x-5+3=-(5-4x)+3-2+
7、3=-2+3=1.当且仅当5-4x=,即x=1时等号成立.所以当x=1时,函数的最大值是1.变式训练2当x时,求函数y=x+的最大值.思路分析:此题是求两个式子和的最大值,但是x·并不是定值,也不能保证是正值,所以,必须使用一些技巧对原式变形.可以变为y=2x-3+=-+,再求最值.解:y=2x-3+=-+,当x时,3-2x0,=4,当且仅当,即x=-时取等号.于是y-4+=,故函数有最大值.例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.图3-4-11现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?2
8、假设使每间虎笼面积为24 m2,那么每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?思路分析:设每间虎笼长为x m,宽为y m,那么1是在4x+6y=36的前提下求xy的最大值;而(2)那么是在xy=24的前提下来求4x+6y的最小值.解:1设每间虎笼长为x m,宽为y m,那么由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,那么S=xy.方法一:由于2x+3y2=2,218,得xy,即S.当且仅当2x=3y时等号成立.由解得故每间虎笼长为4.5 m,宽为3 m时,可使面积最大.方法二:由2x+3y=18,得x=9-y.x0,0y6.S=xy=(9-y)
9、y= (6-y)y.0y6,6-y0.S2=.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使面积最大.(2)由条件知S=xy=24.设钢筋网总长为l,那么l=4x+6y.方法一:2x+3y2=2=24,l=4x+6y=2(2x+3y)48,当且仅当2x=3y时,等号成立.由解得故每间虎笼长6 m,宽4 m时,可使钢筋网总长最小.方法二:由xy=24,得x=.l=4x+6y=+6y=6(+y)6×2=48,当且仅当=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋总长最小.绿色通道:在使用根本不等式求函数
10、的最大值或最小值时,要注意:1x,y都是正数;2积xy或x+y为定值;3x与y必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池(平面图如图3-4-2所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.图3-4-2思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,假设等号不能成立,通常要用函数的单调性进行求解.解:设污水处理池的
11、长为x米,那么宽为米(0x16,016),12.5x16.于是总造价Q(x)=400(2x+2×)+248×2×+80×200.=800(x+)+16 000800×2+16 000=44 800,当且仅当x= (x0),即x=18时等号成立,而1812.5,16,Q(x)44 800.下面研究Q(x)在12.5,16上的单调性.对任意12.5x1x216,那么x2-x10,x1x2162324.Q(x2)-Q(x1)=800(x2-x1)+324()=800×0,Q(x2)Q(x1).Q(x)在12.5,16上是减函数.Q(x)Q(
12、16)=45 000.答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元.问题探究 问题某人要买房,随着楼层的升高,上下楼消耗的精力增多,因此不满意度升高.当住第n层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n层楼时,环境不满意程度为.那么此人应选第几楼,会有一个最正确满意度.导思:本问题实际是求n为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据根本不等式求解即可.探究:设此人应选第n层楼,此时的不满意程度为y.由题意知y=n+.n+2,当且仅当n=,即n=时取等号.但考虑到nN*,n2×1.414=2.8283,即此人应选3楼,不满意度最低.例5解关于x的不等式1(a1) 解 原不等式可化为 0,当a1时,原不等式与(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创业投资信托协议书(2篇)
- 2024年草船借箭教学设计(53篇)
- 2024年福建省莆田市涵江区三江口镇招聘社区工作者考前自测高频考点模拟试题(共500题)含答案
- 2024年福建省《消防员资格证之一级防火考试》必刷500题标准卷
- 黄金卷3-【赢在中考·黄金八卷】(原卷版)
- 2024届四川省绵阳市高三上学期第二次诊断性考试(二模)文综试题
- 2025届南开中学初中考生物押题试卷含解析
- 互补发电系统行业深度研究报告
- 2025公司质押借款合同范本
- 2024年度天津市公共营养师之二级营养师综合检测试卷A卷含答案
- 公务车辆定点加油服务投标文件(技术方案)
- 《中国制造业的崛起》课件
- 中小学学校安全管理制度汇编
- DB21∕T 3240-2020 芹菜农药安全使用生产技术规程
- 2024年全国《考评员》专业技能鉴定考试题库与答案
- 广州沪教牛津版七年级英语上册期中试卷(含答案)
- 2025版国家开放大学法律事务专科《民法学(1)》期末考试总题库
- 幼儿心理健康的教育课件
- DB43T 1167-2016 高纯(SiO ≥99.997%)石英砂 规范
- 《环境保护产品技术要求 工业废气吸附净化装置》HJT 386-2007
- 化工过程安全管理导则学习考试题及答案
评论
0/150
提交评论