




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、七年级上册期末总复习第三章 一元一次方程复习资料本章知识结构等式等式的性质方程一元一次方程的解法解方程方程的解一元一次方程的应用一、基本概念1、什么叫方程:含有 的等式2、什么是一元一次方程:含有 个未知数,并且未知数的次数是 的等式。3、等式的性质等式的性质1的内容是:等式的两边同时 ,结果不变。等式的性质2的内容是:等式的两边同时 ,结果不变。4、解一元一次方程要经过的步骤是: (1)去分母 (2)去 (3) (4)合并同类项(5) 去分母要注意的是:方程中的每一项都要乘以分母的最小公倍数,要找对最小公倍数;分数线中的分子是多项式时要带上括号;去括号时要注意去括号的要领,移项时,要注意变号
2、;合并同类项时要注意系数的准确;系数化一是要注意两边同时乘以未知数的系数的倒数。以上五个过程并不一定是顺序不变的,只要做到及时将一元一次方程化简就是最好的解法。二、基本运算及基本应用题1解下列方程:(1) (2) (3) (4);(5)(可以先约分) (6) (可以先约分)(7) (8) (9) (10) (11) (可以将等式两边先合并同类项)(12)(可以将等式两边先合并同类项)(13)(去括号后可以先合并同类项)(14)(不要去分母) (15) (16)(要注意带上括号与每一项都要乘公分母)(17) (18)(要注意带上括号与每一项都要乘公分母)先化简再解方程()()()()2、应用题分
3、类(对于下面的问题,只设出未知数,列出方程,不要求解出方程)(1)和、差、倍、分问题。 此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。问题的特点是,已知两个量之间存在和倍差关系,可以求这两个量的多少。基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。1、 一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?2、 某通信公司今年员工人均收入
4、比去年提高20%,且今年人均收入比去年的1.5倍少了1200元,求去年人均收入?3 “希望工程”委员会将2000元奖金发给全校25名三好学生,其中市级三好学生每人得奖金200元,校级三好学生每人得奖金50元,问全校市级三好学生、校级三好学生各有多少人?4. 一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?5. 某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?6. 七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加
5、书画社的有多少人?7 .某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)8. 本市中学生足球赛中,某队共参加了8场比赛,保持不败的记录,积18分.记分规则是:胜一场得3分,平一场得1分,负一场得0分。你知道这个胜了几场?又平了几场吗?(2)等积变形问题。 此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。1. 已知圆柱的底面直径是60毫米,高为100毫米,圆锥的底面直径是120毫米,且圆柱的体积比圆锥的体积多一半,
6、求圆锥的高是多少?2. 要锻造一个直径为8cm,高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm。(3)调配问题。 从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。1 . 学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多3人,应调往甲、乙两处各多少人?3. 5位教师和一群学生一起去公园,教师按全票的票价是每人7元,学生只收半
7、价.如果买门票共花费206.50元,那么学生有多少人?4. 甲队人数是乙队人数的2倍,从甲队调12人到乙队,这时甲队人数比乙队人数的一半多3人,求甲队原来的人数。5 .某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?6 . 七年级三班学生参加义务劳动,原来每组8人,后来根据需要重新编组,每组14人,这样比原来减少3组。问这个班共有学生多少人?7. 七年级三班学生参加义务劳动,原来每组8人,后来根据需要重新编组,每组14人,这样比原来减少3组。问这个班共有学生多少人?8、某“希望学校”修建了一栋4层的教学大楼,
8、每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?(4)行程问题。 要掌握行程中的基本关系:路程速度时间。相遇问题(相向而行),这类问题的相等关系
9、是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。航行问题:速度关系是: 顺水速度静水中速度水流速度;逆水速度静水中速度水流速度。飞行问题、基本等量关系:顺风速度无风速度风速 逆风速度无风速度风速行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。1 . 一队学生去学校外进行军事训练,他们以每小时5千米的速度行进,走了
10、18分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以每小时14千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?2.某桥长1000米,一列火车从桥上通过,测得火车从开始上桥到过完桥共用60秒。而整列火车完全在桥上的时间是40秒,求火车的速度和长度3. .某校学生列队以8千米/时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队老师传达一个指示,然后立即返回队尾,这位学生的速度为12千米/时,从队尾出发赶到排头又回到队尾共用了7.2分钟,问学生队伍的长是多少米?4 .甲,乙二人在400米的环形跑道上跑步,已知甲的速度比乙快,如果二人在同一地方出发,同向跑,则3分
11、20秒,相遇一次,若反向跑,则40秒相遇,求甲跑步的速度每秒跑多少米?5 .从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程.6 .一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?7 .A、B两地相距64千米,甲从A地出发,每小时行14千米,乙从B地出发,每小时行18千米,(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需几小时两人相距1
12、6千米?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?8 .在高速公路上,一辆长5m,速度为110km/h的轿车准备超越一辆长为15m,速度为100km/h的大车,轿车能超过大车吗?若能,用多长时间?9 .休息日弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?10 .某人骑车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米,虽然速度增加到了每小时12千米,但比去
13、时还多用了10分钟,求甲、乙两地的距离。11. 甲、乙两地相距240千米,从甲站开出来一列慢车,速度为每小时80千米;从乙站开出一列快车,速度为每小时120千米。问:如果两车同向开出,同向而行(快车在后),那么经过多长时间快车可以追上慢车?12 某学生每天清晨在同一时刻从家里骑车去学校上课,若以每小时16千米的速度行驶,就可以在上课前15分钟到达学校,若以每小时9.6千米的速度行驶,则就要迟到15分钟。问:(1)他家到学校的距离?(2)他每天早晨在学校上课前多少小时从家里出发?(5)工程问题。 其基本数量关系:工作总量工作效率工作时间;合做的效率各单独做的效率的和。当工作总量未给出具体数量时,
14、常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。1 .一项工程,甲、单独做需20天完成,乙单独做需30天完成,如果先由甲单独做8天,再由乙单独做3天,剩下的由甲,乙两人合作还需要几天完成? 2. .一项工程,甲独做需天完成,乙独做天完成,丙独做需天完成,现在甲与丙合作天,丙因事离去,由甲乙合作,甲乙还需几天才能完成这项工程?3. 一部稿件,甲打字员单独打20天可以完成,甲、乙两打字员合打,12天可以完成,现由两人合打7天后,余下部分由乙打,还需多少天完成?4. 一项工程,甲单独完成需要9天,乙单独完成需12天,丙单独完成要15天,若甲、丙先做3天后,甲因故离开,由乙接替甲的工作,问
15、还需多少天能完成这项工程的?5. 一件工作,甲单独做6小时完成,乙单独做12小时完成,丙单独做18小时完成,若先由甲、乙合做3小时,然后由乙丙合做,问共需几小时完成?6. 某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,求该班组要完成的零件任务为多少?7、 非典时期学校整治校园环境,清理一个多年的垃圾堆,初三年级一个班需15小时完工,初二年级一个班需20小时完工,初一年级一个班30小时完工。现初三一个班,初二一个班合作6小时,再由初一一个班单独继续去做,还需几小时完工?. 两根同样长的蜡烛,点
16、完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时.一天晚上停电,小芳同时点燃了这两支蜡烛看书,若干分钟后来电了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问停电多少分钟? 利润进价(6)利润率问题。 其数量关系是:商品的利润率商品利润商品售价商品进价。售价进价(+利润率)注意打几折销售就是按原价的十分之几出售。1. 某商品按定价销售,每个可获利45元,现在按定价的8.5折出售8个所能获得的利润与按定价每个减价35元出售12个所获得利润一样。问这种商品每个的进价、定价各是多少元?2. 已知甲种商品的原价是乙种商品原价的1.5倍,因市场变化,乙种商品提价的百分数是甲种商品降价百分数的2倍
17、,调价后甲、乙两种商品单价之和比原单价之和提高了2%,求甲种商品的降价百分数和乙种商品的提价百分数。3. 某人在广州以每件15元的价格购进某种商品10件,后来又从深圳以每件12.5元的价格购进同种商品40件。如果商店销售这些商品时要获得12的利润,那么这种商品每件的销售价应该是多少元?4. 一家商店将某种型号的彩电先按原价提高40,然后在广告中写上“大酬宾,八折优惠”.经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元的罚款。求每台彩电的价格。5. 商店对某种商品进行调价,按标价的8折出售,此时商品的利润率是10,此商品进价是1600元,求商品的标价是多少元?6. 某种商品进货后,
18、零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?7 .某商场将彩电先按原售价提高30%,然后再在广告中写上“大酬宾、八折优惠”,结果每台彩电比原售价多赚了112元,求每台彩电的原价应是多少元?8、某商店有两个进价不同的计算器都卖了64元,其中一个盈利60,另一个亏本20,在这次买卖中,这家商店盈还是亏?9、某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%。则进价为每件多少元?(7)数字问题。 要正确区分“数”与“数字”两个概念,这类问题通常采用间接
19、设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为:。1 . 三个连续整数的和为72,则这三个数分别是多少?2 有两个两位数,其十位数字均是个位数字的一半,第二个数的十位数字比第一个数的十位数字小1,第一个数加上第二个数后仍为两位数,且和恰为原来第一数十位与个位上数字交换后所得数,求第一个两位数。3. 一个三位数三个数字之和是24,十位数字比百位数字少2,如果这个三位数减去两个数字都与百位数字相同的一个两位数所得的数
20、也是三位数,而这三位数三个数字的顺序和原来三位数的数字的顺序恰好颠倒,求原来的三位数。4. 有两个两位数,其十位数字均是个位数字的一半,第二个数的十位数字比第一个数的十位数字小1,第一个数加上第二个数后仍为两位数,且和恰为原来第一数十位与个位上数字交换后所得数,求第一个两位数。5、 有一个三位数,十位数字是个位数字2倍,百位数字比个位数字大3,如果把十位上的数字与百位上的数字对调,新的三位数与原来三位数和为1246,求原来的三位数。 (8)年龄问题其基本数量关系: 大小两个年龄差不会变。 这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。常用的方法是例出两人年龄分析表,根据每个人
21、年龄增长相等列出等式。1. 现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,多少年后父亲的年龄是儿子年龄的3倍?。2. 小明今年13岁,他爸爸今年39岁,几年后小明的年龄将是爸爸年龄的一半?3、 现在甲的年龄是乙的2倍,8年以后,两人年龄之和74,现在甲比乙大几岁?(9)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。1、 一足球由黑白两种皮子缝制而成共32块,已知黑白皮子数的比为3:5,求各多少块?2 甲、乙两人合资办一个企业,并协议按照投资额的比例多少分配所得利润,已知甲与乙投资额的比例为3:4,首年利润为38500元,问甲、乙两人可获得利润分别为多少元?3. 甲、乙二人去商店买东西,他们所带钱数的比是7:6,甲用掉50元,乙用掉60元,则二人余下的钱数比为3:2,求二人余下的钱数分别是多少?.中草药是我国医学界在药物方面的重大成就,某种中草药含有甲、乙、丙、丁四种草药成分,这四种成分的重量之比为0.7:1:2:4.7。现要配制这种草药2100克,求四种草药分别需要多少克?.洗衣厂今年计划生产洗衣机25500台,其中A型,B型,C型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行业规范电子交易平台运营计划
- 新小学体育个人工作计划
- 新货代工作计划
- 宣城松香项目商业计划书
- 银行大堂经理上半年工作计划2025年3
- 2025年会计实习个人工作计划
- 泉州生态农场商业计划书
- 物流运输安全应急演练计划
- 新大学生保险行业实习计划
- 幼儿园小班下学期教师工作计划5
- 廉洁谈话一问一答简短六篇
- 校服采购投标方案(技术标)
- 儿童压力性损伤评估量表与预防措施
- 微生物课件(老师版) 1.流感病毒
- 屁股-也许是最重要的学习器官-主题微班会
- 解读电子病历系统应用水平分级评价和标准
- KET词汇表(英文中文完整版)
- DBJ61-T 112-2021 高延性混凝土应用技术规程-(高清版)
- CJJT-82-99-《城市绿化工程施工及验收规范》
- 医疗机构手术分级管理办法
- DB11_T1832.3-2021 建筑工程施工工艺规程第3部分:混凝土结构工程
评论
0/150
提交评论