高考数学第一轮总复习100讲(含同步练习) g31085轨迹问题(1)_558重点_第1页
高考数学第一轮总复习100讲(含同步练习) g31085轨迹问题(1)_558重点_第2页
高考数学第一轮总复习100讲(含同步练习) g31085轨迹问题(1)_558重点_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、g3.1085 轨迹问题(1)一、知识要点1.常见的轨迹:(1)在平面内,到两定点的距离相等的点的轨迹是连接两定点的线段的垂直平分线.(2)平面内到角的两边距离相等的点的轨迹是这个角的平分线.(3)平面内到定点的距离等于定长的点的轨迹是以定点为圆心的圆.(4)平面内到定点的距离与到定直线的距离之比等于常数的点的轨迹是圆锥曲线.当常数大于1时表示双曲线;当常数等于1时,表示抛物线;当常数大于0而小于1时表示椭圆.定点和定直线分别是圆锥曲线的焦点和相应的准线.(5)平面内到定直线的距离等于某一定值的点的轨迹是与这条直线平行的两条直线.2.求动点的轨迹的步骤:(1)建立坐标系,设动点坐标M(x,y)

2、;(2)列出动点M(x,y)满足的条件等式;(3)化简方程;(4)验证(可以省略);(5)说明方程的轨迹图形,最后“补漏”和“去掉增多”的点.3.求动点轨迹的常用方法:直接法;定义法;代入法(相关点法);参数法.二、基础训练1已知点、,动点,则点P的轨迹是( ) 圆 椭圆 双曲线 抛物线2 若,则点的轨迹是( ) 圆 椭圆 双曲线 抛物线3点与点的距离比它到直线的距离小,则点的轨迹方程是 4一动圆与圆外切,而与圆内切,则动圆圆心的轨迹方程是 5已知椭圆的两个焦点分别是F1,F2,P是这个椭圆上的一个动点,延长F1P到Q,使得PQF2P,求Q的轨迹方程是 三、例题分析(一)、定义法 例1. C:

3、内部一点A(,0)与圆周上动点Q连线AQ的中垂线交CQ于P,求点P的轨迹方程.例2.已知A(0,7)、B(0,7),C(12,2),以C为焦点的椭圆经过点A、B,求此椭圆的另一个焦点F的轨迹方程.(二)、直接法例3.线段AB的两端点分别在两互相垂直的直线上滑动,且,求AB的中点P的轨迹方程。例4.一条曲线在x轴上方,它上面的每一个点到点的距离减去它到x轴的距离的差都是2,求这条曲线的方程。(三)、转移法:例5.ABC中,B(3,8)、C(1,6),另一个顶点A在抛物线y2=4x上移动,求此三角形重心G的轨迹方程.例6.已知M是圆O:x2y2=a2(a0)上任意一点,M在x轴上的射影为N,在线段

4、OM上取点P 使得|OP|=|MN|,求点P的轨迹方程.NP·OM四、作业 同步练习 g3.1085 轨迹问题(1)1与两点距离的平方和等于38的点的轨迹方程是 ( ) 2与圆外切,又与轴相切的圆的圆心的轨迹方程是 ( ) 和 和3.双曲线经过原点,一个焦点是(4,0),实轴长为2,则双曲线中心的轨迹方程是( )A.(x-2)2+y2=1 B.(x-2)2+y2=9 C.(x-2)2+y2=1或(x-2)2+y2=9 D.(x-2)2+y2=1(x2)2+9y2=36内一点P(1,0)引动弦AB,则AB的中点M的轨迹方程是( )2+9y22+9y2+4x=0 C.4x2+9y22+9

5、y2+4y=05.已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是( )A.2x+y+1=0 B.2x-y-5=0 C.2x-y-1=0 D.2x-y+5=01,F2为焦点的双曲线上运动,则F1F2P的重心G的轨迹方程是 .2+y2=4,动抛物线过点A(-1,0),B(1,0),且以圆的切线为准线,则抛物线的焦点的轨迹方程是 .8(05重庆卷)已知,B是圆F:(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为 9以点F(1,0)和直线x=-1为对应的焦点和准线的椭圆,它的一个短轴端点为B,点P是BF的中点,求动点P的轨迹方程。10.双曲线实轴平行x轴,离心率e=,它的左分支经过圆x2+y2+4x-10y+20=0的圆心M,双曲线左焦点在此圆上,求双曲线右顶点的轨迹方程。11求与两定圆x2y21,x2y28x330都相切的动圆圆心的轨迹方程。12(辽宁卷)已知椭圆的左、右焦点分别是F1(c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论