几何五大模型之二鸟头定理共角定理模型_第1页
几何五大模型之二鸟头定理共角定理模型_第2页
几何五大模型之二鸟头定理共角定理模型_第3页
几何五大模型之二鸟头定理共角定理模型_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、几何五大模型之二:鸟头定理(共角定理)模型C证明:例题1 1:鸟头定理(共角定理)模型!两个三舀”彳中有一个角相同或互补,这两个三角形叫做共角三角形. 共角三角形的面和比等于对应角(相同角或互补角)两夹边的乘积之比. 如下图在ZiABC中,D, E分别是AB, AC上的点(或D在BA的延长线 上E在AC上),贝ISM:SDE=(ABXAC):(ADXAE)圏一C题一解法一:SAADE_SAABC所以 S S合DE= 6 6本题也可以不用鸟头定理,而用等和变换。 连接BE,在ZiAEB中,SAAED: SAAEB=AD:AB=2:3SAAED=(2/3)SAAEB在ABC中,SAAEB: SAA

2、BC=AE: AC=1:4SZiAEB=(H4)SSZiAEB=(H4)S二ABCABC由,式可得SAAED=7X XS二ABC=74 43 36 6题一解法二利用鸟头定理有:AEXADAEXAD AEAE ADAD 1 12 21 1_ _X_= X _(1)例题2 2:(2)题二解法一:SAADE_ _ AEXADAEXAD _ _SAABC ACXAB所以S典DE= 7o o本题依然可以不用鸟头定理,而用等积变换。 苣接BE,在BDE中,SaAED:SaAEB=AD:A3=l:2SAAED=(1SMEB在ZkABC中,SAAEB:SaABC=AE:AC=l: 3SAAEB=(1/4)S4BC由(1),式可得S皿=钗扌XS“BC气题二解法二:C利用鸟头定理有:AEAE ADAD 111111矗=2X5 = 6同样的, 通过观察题二的解法二我们可以找到一个证明如模型图二中鸟头定 理的方法。nADADABAB连接BE,在AEB中,SAADESAABE 在ZkABC中,SAABE _SAABCAEAEACAC将(1) X(2)有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论