中考第二轮复习中考数学难点第1讲 线段、角的计算与证明问_第1页
中考第二轮复习中考数学难点第1讲 线段、角的计算与证明问_第2页
中考第二轮复习中考数学难点第1讲 线段、角的计算与证明问_第3页
中考第二轮复习中考数学难点第1讲 线段、角的计算与证明问_第4页
中考第二轮复习中考数学难点第1讲 线段、角的计算与证明问_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中考数学重难点专题讲座第一讲 线段、角的计算与证明问题【前言】中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中,难题了。线段角问题就是中考数学有难度题的排头兵。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。在这个专题中,我们对下列真题进行总结归纳, 分析研究,来探究线段,角计算证明问题的解题思路。第一部分 真题精讲【例1】如图,梯形ABCD中,A D B ,9038BD CD BDC AD BC =,°,求AB 的长 【思路分析】线段,角的计算证明基本都是放在梯形中,利用

2、三角形全等相似, 直角三角形性质以及勾股定理等知识点进行考察的。所以这就要求我们对梯形的性质有很好的理解,并且熟知梯形的辅助线做法。这道题中未知的是AB, 已知的是AD,BC 以及BDC 是等腰直角三角形, 所以要把未知的AB 也放在已知条件当中去考察. 做AE,DF 垂直于BC, 则很轻易发现我们将AB 带入到了一个有大量已知条件的直角三角形当中. 于是有解如下. 【解析】作AE BC 于E DF BC ,于F DF AE ,AD BC ,四边形AEFD 是矩形3EF AD AE DF =,BD CD DF BC = ,DF 是BDC 的BC 边上的中线 19042BDC DF BC BF

3、= °,4431AE BE BF EF =-=-=, 在Rt ABE 中,222AB AE BE =+ AB 【例2】已知:如图,在直角梯形ABCD 中,AD BC ,90DCB =,AC BD 于点O ,2, 4DC BC =,求AD 的长.DCB A【思路分析】 这道题给出了梯形两对角线的关系. 求梯形上底. 对于这种对角线之间或者和其他线段角有特殊关系(例如对角线平分某角 的题, 一般思路是将对角线提出来构造一个三角形. 对于此题来说, 直接将AC 向右平移, 构造一个以D 为直角顶点的直角三角形. 这样就将AD 转化成了直角三角形中斜边被高分成的两条线段之一, 而另一条线段B

4、C 是已知的. 于是问题迎刃而解.EDCBA【解析】过点D 作/DE AC 交BC 的延长线于点E . BDE BOC =. AC BD 于点O , 90BOC =. 90BDE =. /AD BC , 四边形ACED 为平行四边形. AD CE =. 90, 90BDE DCB =, 2DC BC CE =. 2, 4DC BC =, 1CE =. 1AD =此题还有许多别的解法,例如直接利用直角三角形的两个锐角互余关系,证明ACD 和 DBC 相似,从而利用比例关系直接求出CD 。有兴趣的考生可以多发散思维去研究。【例3】如图,在梯形ABCD 中,AD BC ,90B =,=25AD BC

5、 =,E 为DC 中点,4tan 3C =求AE 的长度 EDCBA【思路分析】 这道题乍看之下好象直接过D 做垂线之类的方法不行. 那该怎样做辅助线呢? 答案就隐藏在E 是中点这个条件中. 在梯形中, 一腰中点是很特殊的. 一方面中点本身是多对全等三角形的公共点, 另一方面中点和其他底, 腰的中点连线就是一些三角形的中线, 利用中点的比例关系就可以将已知条件代入. 比如这道题, 过中点E 做BC 的垂线, 那么这条垂线与AD 延长线,BC 就构成了两个全等的直角三角形. 并且这两个直角三角形的一个锐角的正切值是已经给出的. 于是得解.FEMDCBA【解析】过点E 作BC 的垂线交于BC 点F

6、 ,交AD 的延长线于点M .在梯形ABCD 中,AD BC ,E 是DC 的中点, M MFC DE CE =,在M DE 和FCE 中, M MFCDEM CEF DE CE =MDE FCE . EF ME DM CF =,25AD BC =,32DM CF =. 在Rt FCE 中,4tan 3EF C CF=, 2EF M E =.在Rt AME 中,AE 【总结】 以上三道题, 都是在梯形中求线段长度的问题. 这些问题一般都是要靠做出精妙的辅助线来解决. 辅助线的总体思路就是将梯形拆分或者填充成矩形+三角形的组合, 从而达到利用已知求未知的目的. 一般来说, 梯形的辅助线主要有以下

7、5类: 过一底的两端做另一底的垂线,拆梯形为两直角三角形+ 一矩形 平移一腰,分梯形为平行四边形+ 三角形 延长梯形两腰交于一点构造三角形 平移对角线,转化为平行四边形+三角形连接顶点与中点延长线交于另一底延长线构筑两个全等三角形或者过中点做底边垂线构筑两个全等的直角三角形以上五种方法就是梯形内线段问题的一般辅助线做法。对于角度问题,其实思路也是一样的。通过做辅助线使得已知角度通过平行,全等方式转移到未知量附近。之前三道例题主要是和线段有关的计算。我们接下来看看和角度有关的计算与证明问题。【例4】如图,在梯形CD AB 中,AB DC ,DB 平分ADC ,过点A 作AE BD ,交CD 的延

8、长线于点E ,且2C E =,30BDC =,3AD =,求CD 的长ABDE【思路分析】 此题相对比较简单,不需要做辅助线就可以得出结果。但是题目中给的条件都是此类角度问题的基本条件。例如对角线平分某角,然后有角度之间的关系。面对这种题目还是需要将已知的角度关系理顺。首先根据题目中条件,尤其是利用平行线这一条件,可以得出(见下图)角C 与角1,2,3以及角E 的关系。于是一系列转化过后,发现角C=60度,即三角形DBC 为RT 三角形。于是得解。 【解析】: AE BD 13=,2=E 12= 3=E32=+=ADC E E 2C E =60=ADC BCD 梯形ABCD 是等腰梯形 3=B

9、C AD230=,60=BCD 90=DBCABD在Rt DBC 中, 230=,3=BC 6=CD【例5 】已知:PA =,4PB =,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧. 如图,当APB=45°时,求AB 及PD 的长;【思路分析】如果线段角的计算出现在中间部分,往往意味着难度并不会太高。但是一旦出现在压轴题,那么有的时候往往比函数题,方程题更为棘手。这题求AB 比较容易,过A 做BP 垂线,利用等腰直角三角形的性质,将APB 分成两个有很多已知量的RT 。但是求PD 时候就很麻烦了。PD 所在的三角形PAD 是个钝角三角形,所以就需要我们将P

10、D 放在一个直角三角形中试试看。构筑包含PD 的直角三角形,最简单的就是过P 做DA 延长线的垂线交DA 于F ,DF 交PB 于G 。这样一来,得到了PFA AGE 等多个RT 。于是与已求出的AB 等量产生了关系,得解。 【解析】:如图,作AE PB 于点E APE 中,APE=45 °,PA =, sin 1AE PA APE =, cos 1PE PA APE = 4PB =, 3BE PB PE =-= 在Rt ABE 中,AEB=90°, AB = 如图,过点P 作AB 的平行线,与DA 的延长线交于F ,设DA 的延长线交PB 于G 在Rt AEG 中,可得c

11、os cos AE AE AG EAG ABE =, (这一步最难想到,利用直角三角形斜边高分成的两个小直角三角形的角度关系)13EG =,23PG PB BE EG =-=在Rt PFG 中,可得cos cos PF PG FPG PG ABE =,FG 【总结】 由此我们可以看出,在涉及到角度的计算证明问题时,一般情况下都是要将已知角度通过平行,垂直等关系过度给未知角度。所以,构建辅助线一般也是从这个思路出发,利用一些特殊图形中的特殊角关系(例如上题中的直角三角形斜边高分三角形的角度关系)以及借助特殊角的三角函数来达到求解的目的。第二部分 发散思考 通过以上的五题,我们对线段角的相关问题解

12、题思路有了一些认识。接下来我们自己动手做一些题目。希望考生先做题,没有思路了看分析,再没思路了再看答案。 【思考1】如图,在梯形ABCD 中,AD BC ,CD AB =若AC BD , AD+BC=310, 且=60ABC , 求CD 的长 【思路分析】 前面我已经分析过,梯形问题无非也就那么几种辅助线的做法。此题求腰,所以自然是先将腰放在某个RT 三角形中。另外遇到对角线垂直这类问题,一般都是平移某一条对角线以构造更大的一个RT 三角形,所以此题需要两条辅助线。在这类问题中,辅助线的方式往往需要交叉运用,如果思想放不开,不敢多做,巧做,就不容易得出答案。 解法见后文 【思考2】如图,梯形A

13、BCD 中,AD/BC,B=30°,C=60°,E ,M ,F ,N 分别是AB ,BC ,CD ,DA 的中点,已知BC=7,MN=3,求EF【思路分析】此题有一定难度,要求考生不仅掌握中位线的相关计算方法,也对三点共线提出了要求。若求EF ,因为BC 已知,所以只需求出AD 即可。由题目所给角B ,角C 的度数,应该自然联想到直角三角形中求解。 (解法见后)【思考3】已知ABC ,延长BC 到D ,使C D B C =取AB 的中点F ,连结FD 交AC 于点E 求AEAC的值; 若AB a =,FB EC =,求AC 的长【思路分析】 求比例关系,一般都是要利用相似三

14、角形来求解。此题中有一个等量关系BC=CD,又有F 中点,所以需要做辅助线,利用这些已知关系来构造数个相似三角形就成了获得比例的关键。 (解法见后)【思考4】如图3,ABC 中,A=90°,D 为斜边BC 的中点,E ,F 分别为AB ,AC 上的点,且DE DF ,若BE=3,CF=4,试求EF 的长 【思路分析】 中点问题是中考几何中的大热点。有中点自然有中线,而倍长中线方法也成为解题的关键。将三角形的中线延长一倍,刚好可以构造出两个全等三角形,很多问题就可以轻松求解。本题中,D 为中点,所以大家可以看看如何在这个里面构造倍长中线。BCD(解法见后)【思考5】 如图,在四边形AB

15、CD 中,E 为AB 上一点,ADE 和BCE 都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论P EBA【思路分析】此题也是中点题,不同的是上题考察中线,此题考察中位线。本题需要考生对各个特殊四边形的性质了如指掌,判定,证明上都需要很好的感觉。尤其注意梯形,菱形,正方形,矩形等之间的转化条件。 (解法见后)第三部分 思考题答案思考1【解析】:作DE BC 于E ,过D 作DF AC 交BC 延长线于F 则四边形ADFC 是平行四边形,CF AD =,DF=AC 四边形ABCD 是等腰梯形, AC=BDBD

16、DF = 又AC BD ,DF AC ,BD DF BDF 是等腰直角三角形 11( 522DE BF AD BC =+=在CDE Rt 中, =60DCE , DCE CD DE =sin =60sin 3CD ,10=CD 思考2 【解析】:延长BA ,CD 交于点H ,连接HN ,因为B=30°,C=60°,所以BHC=90° 所以HN=DN(直角三角形斜边中线性质) NHD=NDH=60°连接MH ,同理可知MHD=C=60°。所以NHD=MHD ,即H ,N ,M 三点共线(这一点容易被遗漏,很多考生会想当然认为他们共线,其实还是要证

17、明一下) 所以HM=3.5 ,NH=0.5 AN=0.5 所以AD=1 EF=(1+7)/2=4 思考3【解析】 过点F 作FM AC ,交BC 于点M F 为AB 的中点 M 为BC 的中点,12FM AC =由FM AC ,得CED MFD =,ECD FMD =,FMD ECD 23DC EC DM FM = 22113323EC FM AC AC =BDM AE = AC - EC = AC AC 1 AC - AC 1 3 = AC 2 AB = a , FB = 1 1 AB = a 2 2 1 又 FB = EC , EC = a 2 1 3 EC = AC , AC = 3EC = a 3 2 思考 4 【解析】 : 延长 ED 至点 G,使 DG=ED,连接 CG,FG 则CDGBDE所以 CG=BE=3,2=B 因为B+1=90°,所以1+2=FCG=90° 因为 DF 垂直平分 EG,所以 FG=EF 在 RtFCG 中,由勾股定理得 FG = CG2 + CF 2 = 32 + 42 = 5 ,所以 EF=5 A E F 1 2 G 图3 C B D 思考 5 【解析】 : 证明:如图,连结 AC 、 BD PQ 为 DABC 的中位线, 1 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论