下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精品文档莆田六中 20152016 学年高二下期末考文科数学2016 年 7 月 11 日命题人:高二备课组审核人:吴金炳满分: 150 分考试时间: 120 分钟一、选择题(本大题共 12 小题,每小题5 分,共 60 分。每小题有且只有一项是符合题目要求的)1设为第二象限的角,A.4B.53sin,则 cos()5433C.4D.542设集合A x | x21, B x | 2x3 0,UR,则 ACU B()A B(3,3)C (1,3)D (3 ,3)222已知f (x)2x 2x2,则f (5)等于 ()3.log2 (x1)x24A. 1B. 1C. 2)D. 2x2 ) f (
2、x1 )f ( x2 ) 0()x1 , x2(0,时,均有( x1”的是下列函数 f ( x) 中,满足 “对任意的1 x( B) f ( x)x24x 4( A ) f ( x) ( )2( C) f ( x)x2( D) f ( x)log 1x25设 a, bR ,则“ ab4”是“ ab4”的()A充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件6命题“xR, nN * ,使得 nx2 ”的否定形式是()A xR, nN* ,使得 nx2B xR, nN * ,都有 n x2C x R, nN* ,使得 nx2D xR, nN* ,都有 nx27已知定义在 R 上
3、的函数 f ( x) 有导函数 f( x) ,则“ f ( x0 ) 0 ”是“ xx0 为函数 f (x) 极值点”的()A充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件8.函数 y2x的图象大致为()ln | x |9函数f (x)x( xc) 2 在 x2 处有极大值,则c()A2B.4C 6D2或 610.已知定义在R 上的函数f (x) 和 g(x) ,记(x)f (x)g( x) 。则下列四个命题中正确的有()个精品文档精品文档若(x) 有最小值,则f (x) 和 g( x) 中至少有一个有最小值;若(x) 为偶函数,则f (x) 和 g( x) 中至少有一个
4、为偶函数若(x) 为增函数,则f (x) 和 g( x) 中至少有一个为增函数若 (x) 为周期函数,则f (x) 和 g (x) 中至少有一个为周期函数A0 B 1C 2D311.已知函数 f ( x) a exx1有两个不同零点,则实数a 的取值范围是()A(0,1)B (1,)C (,1)D(0,)12.已知 f ( x) 为定义在 (0,) 上的可导函数 , 且 f ( x)xf (x) 恒成立 , 则不等式 x2 f ( 1 ) f ( x)0 的x解集为()A (0,1)B (1,2)C (2,)D (1,)二、 填空题 (本大题共 4 小题,每小题5 分,共 20 分)13.已知
5、函数 y log a ( x1) (a 0且a1) 恒过定点 M ,则定点 M 的坐标为 _14已知 sin22) _,则 cos(315.已知 f x为奇函数,当 x0 时, f ( x) ln( x)3x ,则曲线 yf x 在点 (1, f (1)处的切线方程是 _ 。x33x, xaa 的取值范围是 _.16.设函数 f (x)。若 f (x) 无最大值,则实数2 x, xa三、解答题:本大题共6 小题, 17 题 10 分,其它每题12 分,共 70分。解答应写出文字说明,证明过程或演算步骤。17已知函数 f (x)32xx2的定义域为A ,值域为 B(1)求集合 A, B, AB
6、;( 2)设集合 C x | x2x a0,若 AC,求实数 a 的取值范围。18设函数 f (x)Asin(x)(A 0,0, x R) 的部分图象如图所示 .( 1)求函数 yf ( x) 的解析式;22y( 2)当 x , 时,求 f ( x) 的取值范围 .222O5x36第 18题图精品文档精品文档19已知函数f ( x)x2(4 a 3) x3a( 1)当 a1 , x 1,1时,求函数f (x) 的值域;( 2)已知 a0 且 a1f (x),x0a 的取值范围。,若函数 g( x)1, x为 R 上的减函数,求实数log a ( x 1)0120已知 aR ,函数 f (x)l
7、og 2 (a) .x( 1)当 a5时,解不等式f ( x)0 ;( 2)若对任意t 1 ,1 ,函数 f ( x) 在区间 t, t1 上的最大值与最小值的差不超过1,求 a 的取值范围 .221. 已知函数( 1)求函数f x ln x1ax 2 a R .2f x 的单调区间和极值;( 2)讨论函数f ( x) 在区间 1,e2 上零点的个数请考生在第( 22)、( 23)、( 24)三题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号22. (本小题满分 10 分)选修 4-1:几何证明选讲(本题不选)23. (本小题满分 10 分)选修 4-4:坐标系与参数方程x3
8、cosx 轴的正半在直角坐标系 xOy 中,曲线 C1 的参数方程为( 为参数),以坐标原点为极点,以ysin轴为极轴,建立极坐标系,曲线C2 的极坐标方程为sin()2 2 .4( I )写出 C1 的普通方程和 C2 的直角坐标方程;( II )设点 P 在 C1 上,点 Q在 C2 上,求 | PQ| 的最小值 .精品文档精品文档24. (本小题满分 10 分)选修 4-5:不等式选讲已知函数 f ( x) x 22x1 .( ) 解不等式 f (x)6 ;( ) 若存在 x0 满足 f ( x0 ) a0 ,求 a 的取值范围 .精品文档精品文档莆田六中 2015-2016学年高二下期
9、末考 文科数学 评分标准一选择题1-5: BCDCA 6-10: DBBCA11-12: AD二、填空题13、 (0,0)14、115、 y2x116、 (,1)9三、解答题17. 解:( 1)要使得函数有意义,则32xx20, .1分即 x22x30 解得1x3 。所以 A 1,3.2分令 t 3 2x x2(x 1)24 ,则 yt.3分1x3 , 0t4 ,所以函数的值域是B0,2。.4分A B1,3.6分(2)【法一】AC所以方程 x2xa0 在区间 1,3上有解。即 x2xa 在区间 1,3上有解。 .7分令 g( x)x2x , x 1,3,则 ag( x) 的值域。 . . .
10、. . . . . . . 8分函数 g(x) 的对称轴为 x1,所以 gmin (x)g( 1)1,gmax ( x) g (3)12.11224分所以 a 的取值范围是 1,12。.12分4【法二】:AC所以方程 x2xa0在区间 1,3上有解。 .7 分则0 且“1114a3或1114a3” .9分22解得1a 12 或1a 0 ,即1a12。.11分444综上 a 的取值范围是 1,12.12分418 解:( 1)由图象知,A2, 2 分又 T53,0,所以 T22,得1. 4462分精品文档精品文档所以 f ( x)2sin( x),将点 (, 2) 代入,得22k(kZ ) ,33
11、即62k(kZ),又2,所以. 6 分26所以 f ( x)2sin( x) . 8 分6, 2(2)当 x, 时, x ,10分22633所以 sin( x)3 ,1 ,即 f (x) 3,2. 12 分 126219. 解:( 1)当 a1 时, f ( x)x2x3 。 x 1,1对称轴 x1,.22 分故 fmin (x)f (1)11, fmax ( x)f (1)5。.4分24函数 f (x) 的值域为 11,5.5分44a33(2)由已知可得f (x) 在 (,0) 时单调递减,故对称轴0即 a2. . .47 分f ( x) 在 0,) 时单调递减,故即0a1 . . . .
12、. . . . 9分又 g( x) 在 R上递减,则f (0)g(0) ,即3a 1 ,解得 a1分.11综上 13。 .123a分3420. 【解】( 1)由log 2150,得 154x1.2xx1 ,即x0分解得 x, 10,.4分4(2)当 0x1 x2 时,1a1a ,log21log21x1x2aa ,x1x2所以 fx在 0,上单调递减 .5分(这里不作证明直接给出结论不扣分)函数 fx在区间 t, t1 上的最大值与最小值分别为 ft, ft 1 . . . .6分f tft 1log 21alog 21a1 即tt1精品文档精品文档log 21alog 21a1.7分tt1【
13、法一】即 1a2(1a) ,整理得 121a 对任意 t1,1成立。 .tt1tt28 分令 g(t)1t2 ,则 gmax (t )a 。 . . . . . . . . 9分t1g (t )t 22t1,当 t 1 ,1 时, t22t10,所以 g (t)0 。 g(t) 在区间 1 ,1 上t 2 (t1)222单调递减, gmax (t)g ( 1)2,.11分所以 a2故 a 的取值范围为2332 ,。.12分3【法二】即 1a2(1a) ,整理得 at 2a1 t10 ,对任意 t1 ,1成立. .tt129 分因为 a0 ,所以函数 y at 2a1 t 1在区间1,1上单调递
14、增, t1时, y 有最小22值 3 a1 ,由 3 a10,得 a2 故 a 的取值范围为2 ,.12分424233 解:()定义域: (0,) ,.1分f ( x)1.2分211axx 当 a0时, f( x)0恒成立,故函数fx 为增函数,即单调递增区间为(0,) ,无递减区间,无极值。 . . . . . . 3分 当 a0时, f( x)01ax0x1 或 x1(舍去)。xaa列表如下:x(0,1)1(1, )aaaf ( x)0f ( x)极大.4分所以函数的递增区间是(0,1) ,递减区间是 (1,);.5分aa精品文档精品文档极大值为 f (1 )1 ln a1,无极小值。 .
15、 . . . 6分a22(2)法一:【分离参数与变量】由f ( x)0 得 a2ln x2ln xx2,令 g ( x)x2则函数 fx 在区间1,e2上零点的个数等价于直线ya 与函数 g( x) 图像交点的个数。 . . . . . . 7分g (x)24ln x令 g ( x) 0xe . . . . . . 8分x3列表如下:x1,e)e( e, e2 g ( x)0g ( x)极大值又 g(1)0 , g(e)124分作出函数的简图(略)由图可, g (e )4 .9ee知当 0a41x在区间 1,e2上有一个零点; .10分4或 a时,函数 fee当 4a1时,函数 f x在区间1
16、,e2 上有两个零点; . . . . . . 11分e4e1当 a0或 a时,函数 fx在区间1,e2 上没有零点 . . . . . . 12分e1)可知:(评分标准:以下每个情况各一分,综上一分)法二:【不分离】由(当 a0 时, fx为增函数,又f (1)1 a0 ,所以函数 f x 在区间 1,e2上没有2零点;当 a0时, fxln x ,又f (1)0 ,所以函数 fx 在区间 1,e2上有一个零点;当 a0且 1e2 即 0a1时, f x 在 1,e2 上单调递增, f (1)1a0ae42f (e2 )21 ae40,所以函数fx在区间1,e2 上有一个零点;2111时,函
17、数的递增区间是 (1, 1 ),递减区间是 当 a0 且 1e2即aae4a( 1 , e2 )a所以 fmax (x)f ( 1)1 ln a1a22()当 fmax ( x)0 即1a1时,函数 fx 在区间 1,e2 上没有零点;e精品文档精品文档()当 fmax ( x)0 即 a1时,函数 fx 在区间1,e2上有一个零点;e111()当f max ( x)0即a时 , 又f ( 1 )a,所以当e4e02f (e2 )21 ae40时,即 1a4,函数 fx在区间 1,e2上有一个2e4e4零点;当 f (e2 )21 ae40时,即 44a1 时,函数 fx 在区间1,e22ee上有两个零点;当 a 0 且 11 即 a1 时, fx在 1,e2 上单调递减,又f (1)1a0,函数a2fx 在区间 1,e2上没有零点综上:见法一的结论。23.解:( 1)曲线 C1 的普通方程为x2y21,.2分3C2 的直角坐标方程为xy40 .4分( 2)由题意,可设点P 的直角坐标为 (3 cos ,sin) ,因为 C2 是一条直线,所以 PQ 的最小值即为点P 到直线距离 d()的最小值。 .6分3 cossi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年营林及木竹采伐机械项目资金申请报告代可行性研究报告
- 强迫症简介以及案例分析
- 临床医生年底总结(33篇)
- 山东省临沂市兰山区2024-2025学年部编版七年级上学期期中历史试卷(含答案)
- 江西省乐平市洪马中学2024-2025学年八年级上学期期中物理测试卷
- 离婚协议模板
- 保险合作协议书模板
- 2024年版会计人员竞业限制协议
- 宣传策划合作合同参考
- 国际海缆电路出租业务服务协议
- 风电项目投资计划书
- 南京大屠杀-张纯如
- 学术道德与伦理
- GB/T 29712-2023焊缝无损检测超声检测验收等级
- 初中美术期末检测方案
- 第三节 生态系统的平衡课件
- 配电室运行维护投标方案(技术标)
- 初中化学试卷讲评课件
- 2024届东北师大附中重庆一中等六校化学高一第一学期期中检测试题含解析
- (完整版)医疗器械网络交易服务第三方平台质量管理文件
- 13G322-1~4《钢筋混凝土过梁(2013年合订本)》
评论
0/150
提交评论