版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2020年秋九年级数学上册第22章单元测试题卷二次函数时间;12。分钟分值;12。分、选择题体大题共6小题,每小题3分,共18分)1 .下列函数属于二次函数的是()A,广斯- 1E- r=2Gr+l):-lC尸 1 - JTD. y= 5 3):- rx2 .二次函数y= U+ir-2的最小值是()A. -2 B. -1C- 1D. 23 .若- G,5(1,jc),。川三点都在二次函数尸=-Cr- 2)"+ 1的图象上,则 y.» JG的大 小关系为()氐e j<<z<z c k。D y<y<y.4 .二次函数了二蜕+版十。与一次国数/=初十
2、。在同一直角坐标系中的圉象可能是(5 .下表为二次的数x 加+为r+c的自变里式与函额夕的部分对应值(其中地Dn),则下列结论正确的 是()X0124> >>y k口 A.显0B- y-4oC.4a一 28 4 KOD. ab+c<Q6,若二次函数广获+3x+c的图象与x轴有两个公共点,坐标分别为(及,Q),俳,。),且X:/,图 象上有一点就为,在x轴下方,则下列判断正确的是()A. 心口B-疔-4比C.x<x3<jf3D-3以一毛)每一是)<0二、填空题(本大题共6小题,每小题3分,共18分)7.抛物线尸1)43)与x轴的公共点的坐标是.8,将地物
3、线y= 2/向左平移1个单位长度,再向下平移2个单位长度,所得抛物线的解析式为g.如图,抛物线尸戒十比十。的对称轴为直线乂= 1,f,是抛物线与丫轴的两个公共点.若点产的坐标为(4, 0),则点口的坐标为1010 .抛捌线尸=%x+2);十4关于x轴对称的抛物线的解析苴为.311 .飞机着陆后追行的距离式单位:m)关于渭行时间寅单位;s)的函数解析式是夕=261-4干,则飞机 2着陆滑行到停止,最后6 日滑行的路程为12,已知二次因数尸3 -纭而为常数),当- 1<“<2时,函数下的最小值为- 2,则前的值是三、解答题(本大题共5小题,每小题6分,共30分)13 . (1)已知抛物
4、线=4-5-3与x轴有两个公共点,求行的取值范围;已知二次困数图象的顶点坐标为(1,-3),且过点(2, 0),求这个二次困效的解析式.14 .已知二次困领尸才一射一8.(1)将尸3 -8用配方法化成=存5-方>7的形式,并写出其图象的顶点坐标? 求此函数图象与“轴、尸轴的公共点坐标.15 .如图为二次函数产国+o的图象,利用图象回答问题:(1)关于X的方程4 +。丫十。=0的解是5关于Y的不等苴获+加+共。的鼾集是关于工的不等式加G8的解集是16 .如图,用总长为60 m的篱西围成一个一边靠墙(墙长32 m)的矩形场地,矩形面积宓C随矩形的一 边题的七式m)的变化而变化.求出5与;之间
5、的函数关系式;(2)当为多少米时,矩股场地的面租S最大,最大面世是多少平方米?17 .如图,在平面直角坐标系中s矩形瓯的边3, 3分别位于、轴,轴上,经逅月,C两点的抛物线交火轴于另一点0连接/,请你仅用无刻度的直尺拉下列要求画图:U)在图中的抛物线上画出点白使班=/g(2)在图多中的地物线上画出抛物线的对称轴.四、解答题(本大题共3小题,每小题8分,共24分)18 .某游乐园有一个直径为16米的图形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线, 在距水泄中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合,如 图,以水平方向为箝轴,喷水池中心为原点建立直角
6、坐标系.(1)求水柱所在抛物线(第一象限部分)的函数解析式;王师傅在喷水池内维修设笛期间,喷水管意外喷水,为了不被淋湿,身高L8米的王师傅站立时必 须在离水池中心多少米以内?19 .如图,抛物统产数十加-2与y轴的公共点为4槌物建的顶点为盘1,-3).求抛物线的筑析式;(2)产为“轴上一点,当尸初的周长最小时,求点产的坐标.20 .如图,直线四过丫轴上的点出2,。卜且与抛物线尸蓑相交于历,两点,点斤的坐标为(3 D.(1)求直线切和抛物线的函数露析式.(2)在掘物线上是否存在一点6使得昆允=£工?若存在,请求出点方的坐标多若不存在,请说明理 由.五、解答题(本大题共2小题,每小题9分
7、,共18分)2L某商店购进一批成本为30元/件的商品,经调查发现,该商品每天的消售里2件)与消售单价”(元 /件)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的消售鱼不与消售单价”之间的国数关系式(不要求写自变里的取值范围)i(2)当销售单价定为多少时,才能使消售该商品每天获得的利同八元)最大?最大利闰是多少?。)若商店要使稍售该商品每天获得的利润不低于80。元,试确定稍售单价k的范围.22.某数学兴趣小组在探究函数片依 数+ 3的图象和性质时经历以下几个学习过程:列裹(完成以下表格):JCail-10i2345oat = y-4r+3 80038 y= |y-4x+3|S SB8
8、00380 8 0描点并画出函数图象二根据图象1成以下问题:观察图象,当时,尸随x的增大而减小;数学小组探究发现直线尸8与函数y="-射+31的图象交于点E7,8),网5, 8),则不等立|4-酎+3|8的解集是;9探究应用:设函数尸=I5+31的图象与x轴交于43两点(点f位于点片的右侧),与尸轴交手 点小将直线比沿y轴平移处个单位长度后与函数尸及-仙+3的图象恰好有3个公共点,求加的值.六、簇答题(本大题共12分)23.如图9,抛物线,:F=夕经过变换可得到抛物线。:/=先、以-瓦),工与“轴的正半轴交于点4, 且其对称轴分别交抛物线C,C于点K,”,此时四边形磔也恰为正方形.按
9、上述类似方法,如图,触 物 1 ;兄=6:k5 - &)经过变换可得到抛物级G ; / = -幻,W与x轴的正半轴交于点4,且其对称 轴分别交抛物线4,6于点回,川,此时四边形8月初也怕为正方形.按上述类似方法,如图©,可得到施 物线G :兄=%乂5- ')与正方形ORAR.请探究以下问题:U)填空:隹=,瓦=.(2)求出抛物线与G的解析式.(3)按上述类似方法,可得到抛物线公上=斯缶-为与正方形。贴山灯1且与为整数).语用含力的代数式直接表示出“的籥析式;当x版任意不为0的实薮时,试比簌为,与Aw的函数值的大小关系,并说明理由.参考答案1. B 2A 3.B 4.0
10、 5.C 6.D7(1,0),(一3, 0) 8.y=2(x+iy - 2 9.(一2,0)10. y=x+2)1-4 11.18 或心13.解g (1)由题意,得.、解得a>-=且a5fco.Q)设此二次困数的解析式为y = a(x-3.丫其图象经过点(2, 0),,2(2-厅-3=0,解得a = 3,这个二次函数的解析式为y= 3物-1卜-3,即y =娱-6*14 .解;(l)>'=x;-2x-8=x2-2x+l-9 = (x- iy-9?二二次函数图象的顶点坐标为(1,-9).(2)当 x= 0时,丫 =x: -2x-S = -8,此函数图象与丁轴的公共点坐标为(0,
11、 -8);当 y = 0 时3 x:- 2x-S = 0j 锢得xl=-23 %=43,此函额圉象与又轴的公共点坐标为-2, 0)和(4, 0).15 . (l)xi = 2 xz=4 (2)2<x<4 3次0 或16 .解:(1)8=1(60-21)= -21-+«)1(14<1<30).(2)VS= -2F + 601= -2(1-15)i+4505二当1=15时,S取得最大值,为450,当1为15m时,矩形场地的面积S最大,最大面积是450亩.17 .解,。义口图3点E即为斫求.Q)如图矽,直线QP即为所求.1S.解:(1)设水柱斫在抛物线(第一象限部分
12、)的函数解析式为y=a(x-3> + 5.将尊,0)代天,得25a十5=0,留得a - 5-水柱所在抛物线(第一象限部分)的困数解析式为y = -等+ 5(0<x<S).(2)当 y=l£B寸,有-*-3> + 5 = Lg,解得用=-1,* = 7,,为了不稹淋湿,身高1S木的王师傅站立时必须在离水池中心:米以内.19.解:(1”抛物线的顶点为80,-3),二可设抛物线的解析式为y =a(x-1>-3.由y = ax:+bx-2,得A0,-2)把A(0,-2)代入y = *x-得3-3=-2,解得 a=,抛物线的解析式为y=体-厅- 3=W - 2x=
13、 2.Q)如图,点A(Q,-2)关于工轴的对称点为*(。,2A连接ArB交x轴于点P,连接PA,AB,则此时PAB的周长最小设直线AE的解析式为y=M+m20.解;Q)设直线AB的解析式为y=kx+b耙A(2, O),BQ,1消入,得p=2k+b, l = k + 6叫二直线AB的解析式为y=-x+2.,点B(l,1电抛物线丫=笳上,a=l,抛物线的解析式为y=x:.(2)存在设 Dx,X%' Sioad = OAi - j v-d: = i X 2 x: = x:.联曲=:/?,朗得L=7, "L"k=xrM=l,3 = 4,, S二烟= S38- SAB = 9
14、 2X4 一乂2 X1 = 3.SicBG = S.o?kD, x-= 3» 解得 x 二 士由,二点 D 的坐标为(一由,3)或括,3).21.解;(1)设该商品每天的俏售里y与精售单价x之间的函数关系式为y=H+bR00=301:+b,k=-2,将(3。,网S 7。)代入,畤oT.b,解得口侬,故该商品每天的梢售里y与俏售单价义之间的函数关系式为y=-2义+160.(2)由题意得w = (x_30)(_ 2x+ 160)= -2(x- 55/+ 1250,当x =55时,w有最大值,为1250,1故当销售单价定为55元件时,才能使徜售该商品每天获得的利闻最大,最大利用为1250元
15、.(3)由题意得(x-30X-2x+160) = 800,解得 x1=70,尼=4。根据二次困蓟的图象与性质,可得当40x:0时,(x-30)(-2x+160)3800,故稍售单价x的范围为 40<x<70.22 .解,(1兴口下表:X-1012145 yi=x:"4x + 38 0-103gBBSy= x: - 4x + 3: S30103£(2)如图:(3)x<l 或 2<x<3 x< - 1 或 x)5如图回,直线BC与困数$= G-4x + 3的图象只有3个公共点,此时,m=0J由(1)中的表格可知巩30),:0,3),直线8(:
16、的解析式为3,=-又+3.如图(£|,若直线丫=-犬+1583)与函数Y = 或-依+ 3的图象只有3个公共点,联立F二 -"b'消去W整理得好-%十b+3 =。3v= -x- + 4x-Si '由题意,得一=254(b+3)=0,解得b=325,m=025.综上所述,m=0或m=0.25.23解;当 y1=0 时72秘-卜)=0,'泪=0,X2=bi? 'A(bi? 0).由正方形 OBi AM 潺 OA: = BiDi = bi,步吟号.点B】在抛物线C上,则空舒,整理得b-2) = 0,解得b=0(不符合题意,舍去)或瓦=2,二D0,-
17、 1).把历= 2,DML -1)代入山=3滨(工一比)中,潺-1=-&,a = 1.故答案为1,2.(2)由(1)可知抛物线Ci的解析苴为y = xr- 2)=炉- 2乂当宾=0时,空乂住一上)=0,'及=0,% = bi,'氏也,0)-由正方形0&A;D:得0%=B;D; = b.,二点民在抛物线C上,二,=(左2 乂号 整理得 b:(b: - 6) = 0,解得b: =0(不符合题意,舍去)或b; = 6.D;3 - 3).把 b;=6, D;3,一 ”代入 y:=a;x(x-b2>,得- 3 = 3 = (3 - 6),解得 a:=g,抛物续G的解析式为方=1例-8) = * - 2*当 y$= 0 时'ajx(x - b= 0 > .'内=0,x; = b;,'入.也,0).由正方形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交通事故赔偿金协议书七篇
- 鲍恩病病因介绍
- 劳务派遣书面协议书七篇
- 《数据资产入表合规规范指南》(征求意见稿)
- (参考)雕刻工艺品投资项目可行性研究报告
- 2023年天津市南开区高考语文二模试卷
- 《廉政公署专题》课件
- 电工培训课件之跌落熔丝的操作
- 《广告创意文案设计》课件
- 内蒙古呼伦贝尔市阿荣旗2023-2024学年七年级上学期期末考试数学试卷(含答案)
- 《逻辑的力量》课件++2023-2024学年统编版高中语文选择性必修上册
- 内科主任职责
- 搬迁保密工作方案
- 油款欠账合同
- 宝玉石鉴定指南智慧树知到期末考试答案2024年
- 水利工程的历史与发展
- 2023年中国软件行业基准数据SSM-BK-202310
- T-ZZB 3579-2023 户外用便携式手拉车
- GLB-2防孤岛保护装置试验报告
- 白油检测报告
- 心肌梗死患者的护理健康评估培训
评论
0/150
提交评论