版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、材料力学考试题集31 / 29、单选题1. 构件的强度、刚度和稳定性 (A)只与材料的力学性质有关(C)与二者都有关2. 一直拉杆如图所示,在P力作用下(B)只与构件的形状尺寸有关(D)与二者都无关O(A)横截面a上的轴力最大(C)横截面c上的轴力最大3.在杆件的某一截面上,各点的剪应力(A)大小一定相等(C)均作用在同一平面内(B)横截面b上的轴力最大(D)三个截面上的轴力一样大O(B)方向一定平行(D)定为零4.在下列杆件中,图 所示杆是轴向拉伸杆。7/(A) /* P(B)P/(C)丿 : (D)*F5.图示拉杆承受轴向拉力P的作用,斜截面m-m的面积为A,贝U (T =P/A为。P*(
2、A) 横截面上的正应力(B) 斜截面上的剪应力(C) 斜截面上的正应力(D) 斜截面上的应力O(C)lb(D)lc(A)ab(B)cb9.微单元体的受力状态如下图所示,已知上下两面的剪应力为 为T则左右侧面上的剪应力4倍、2倍4倍6. 解除外力后,消失的变形和遗留的变形(A) 分别称为弹性变形、塑性变形(C)分别称为塑性变形、弹性变形7. 一圆截面轴向拉、压杆若其直径增加一倍,(A) 强度和刚度分别是原来的2倍、4倍(C)强度和刚度均是原来的2倍8. 图中接头处的挤压面积等于O(B) 通称为塑性变形(D) 通称为弹性变形贝y抗拉 o(B) 强度和刚度分别是原来的(D) 强度和刚度均是原来的(A
3、) T /2(B) T10.下图是矩形截面,则 mm线以上部分和以下部分对形心轴的两个静矩的(A) 绝对值相等,正负号相同(C) 绝对值不等,正负号相同11. 平面弯曲变形的特征是 (A) 弯曲时横截面仍保持为平面(C) 弯曲变形后的轴线是一条平面曲线(B) 绝对值相等,正负号不同(D)绝对值不等,正负号不同(B) 弯曲载荷均作用在同一平面内;/C(D)弯曲变形后的轴线与载荷作用面同在一个平面内12. 图示悬臂梁的 AC段上,各个截面上的1倍,(D)16T倍。(A) 剪力相同,弯矩不同(C) 剪力和弯矩均相同13. 当横向力作用于杆件的纵向对称面内时,结论。其中是错误的。(A)若有弯矩M,则必
4、有正应力(T(C)若有弯矩M,则必有剪应力T14. 矩形截面梁,若截面高度和宽度都增加(A) 2(B)4(C)8(B) 剪力不同,弯矩相同(D)剪力和弯矩均不同关于杆件横截面上的内力与应力有以下四个(B) 若有正应力 6则必有弯矩(D) 若有剪力G,则必有剪应力 则其强度将提高到原来的15. 等截面直梁在弯曲变形时,挠曲线曲率在最大(A)挠度(B)转角处一定最大。(C)剪力(D)弯矩是相同的。(D)力学性质杆横截面上的内力。(C)静定(D)基本变形是错误的。(A)N20.(A)分别是横截面、(C)分别是45°斜截面,横截面=-5P轴向拉伸杆,(B) N = -2P(C) N = -7
5、P正应力最大的截面和剪应力最大的截面45°斜截面(B)都是横截面(D)都是45°斜截面(D) N = -P16. 均匀性假设认为,材料内部各点的(C)位移(A) 应力(B)应变17. 用截面法只能确定(A) 等直(B)弹性18. 在下列说法中(A) 位移可分为线位移和角位移(B) 质点的位移包括线位移和角位移(C) 质点只能发生线位移,不存在角位移(D) 个线(面)元素可能同时发生线位移和角位移图示杆沿其轴线作用着三个集中力.其中mm截面上的轴力为19.21.某材料从开始受力到最终断开的完整应力应变曲线如图所示,该材料的变形过程 无。(A)弹性阶段和屈服阶段(C)屈服阶段和
6、强化阶段22.图示杆件受到大小相等的四个方向力的作用。其中(B)强化阶段和颈缩阶段(D)屈服阶段和颈缩阶段段的变形为零。一aaa*(C)AD(D)BC(A)AB(B)AC23. 在连接件剪切强度的实用计算中,剪切许用应力是由(A)精确计算(B)拉伸试验(C)剪切试验24. 剪切虎克定律的表达式是.(A)Ey(B)干 Eg (C)25. 在平面图形的几何性质中,(A)静矩和惯性矩(C)惯性矩和惯性积26. 图示梁(c为中间铰)是得到的。(D)扭转试验宁 Gy(D)貯 G/A的值可正、可负、也可为零.(B)极惯性矩和惯性矩(D)静矩和惯性积Pl(D)简支梁(A)Q图相同,M图不同(C) Q、M图都
7、相同i(B)Q图不同,M图相同(D) Q、M图都不同(A)静定梁(B)外伸梁(C)悬臂梁27. 图示两悬臂梁和简支梁的长度相等,则它们的28. 在下列四种情况中,称为纯弯曲。(A) 载荷作用在梁的纵向对称面内(B) 载荷仅有集中力偶,无集中力和分布载荷(C) 梁只发生弯曲,不发生扭转和拉压变形(D) 梁的各个截面上均无剪力,且弯矩为常量所示截面梁在29. 下列四种截面梁,材料和假截面面积相等.从强度观点考虑, 铅直面内所能够承担的最大弯矩最大。i JI 是正确的。(B)弯矩最大的截面挠度最大(D)弯矩为零的截面曲率必为零(D)位移_建立平衡方程的。(B)该截面右段(D)整个杆33.图示受扭圆轴
8、上,点AB段30. 在下面这些关于梁的弯矩与变形间关系的说法中,(A) 弯矩为正的截面转角为正(C) 弯矩突变的截面转角也有突变31. 各向同性假设认为,材料沿各个方向具有相同的(A)力学性质(B)外力 (C)变形32. 用截面法确定某截面的内力时,是对(A)该截面左段(C) 该截面左段或右段Mb(A)有变形,无位移(C)既有变形,又有位移34. 一等直杆的横截面形状为任意三角形, 面上的正应力均匀分布。(A)垂心(B)重心(C)内切圆心35. 设轴向拉伸杆横截面上的正应力为(B)有位移,无变形(D)既无变形,也无位移当轴力作用线通过该三角形的(D)外切圆心则45°斜截面上的正应力和
9、剪应力时其横截(A)分别为b/ 2和b(B)均为b(C) 分别为b和b/ 2(D)均为b /236. 关于铸铁力学性能有以下两个结论:抗剪能力比抗拉能力差;压缩强度比拉伸强度高。其中 o(A) 正确,不正确(B)正确,不正确(C)、都正确(D)、都不正确37. 直杆的两端固定,如图所示.当温度发生变化时,杆(A) 横截面上的正应力为零,轴向应变不为零(B) 横截面上的正应力和轴向应变均不为零(C) 横截面上的正应力不为零,轴向应变为零(D) 横截面上的正应力和轴向应变均为零是正确的纯剪切状态。38. 在以下四个单元体的应力状态中,39. 根据圆轴扭转的平面假设.可以认为圆轴扭转时其横截面 o(
10、A) 形状尺寸不变,直径仍为直线(B)形状尺寸改变,直径仍为直线(C)形状尺寸不变,直径不保持直线(D)形状尺寸改变,直径不保持直线O(B)静矩不为零,惯性矩为零(D)静矩和惯性矩均不为零Q为负的是40. 若截面图形有对称轴,则该图形对其对称铀的(A) 静矩为零,惯性矩不为零(C)静矩和惯性矩均为零41. 图示四种情况中,截面上弯矩值为正,剪力打42. 梁在集中力作用的截面处(A) Q图有突变,M图光滑连续 (C)M图有突变,Q图光滑连续43. 梁剪切弯曲时,其横截面上(B) Q图有突变,M图连续但不光滑(D)M图有凸变,Q凸有折角(A)只有正应力,无剪应力(C)既有正应力,又有剪应力44.
11、梁的挠度是_。(A) 挠曲面上任一点沿梁轴垂直方向的线位移(B) 横截面形心沿梁轴垂直方向的线位移(C) 横截面形心沿梁轴方向的线位移(D) 横截面形心的位移45. 应用叠加原理求位移对应满足的条件是(A)线弹性小变形(C)平面弯曲变形46. 根据小变形条件,可以认为 (A)构件不变形(C)构件仅发生弹性变形(B)只有剪应力,无正应力(D)既无正应力,也无剪应力。(B)静定结构或构件(D)等截面直梁(B)构件不破坏(D)构件的变形远小于其原始尺寸是正确的。(B)内力是应力的矢量和(D)应力是内力的分布集度47. 在下列关于内力与应力的讨论中,说法(A)内力是应力的代数和(C)应力是内力的平均值
12、。(B)角位移、角位移(D)角位移、线位移(7= N/A的主要应用条件是。(B)外力合力作用线必须重合于轴线(D)杆件必须为实心截面直杆48. 在轴向拉压杆和受扭圆轴的横截面上分别产生(A)线位移、线位移(C)线位移、角位移49. 拉压杆横截面上的正应力公式(A)应力在比例极限以内(C)轴力沿杆轴为常数50. 轴向拉压杆,在与其轴线平行的纵向截面上 。(A)正应力为零,剪应力不为零(B)正应力不为零,剪应力为零(C)正应力和剪应力均不为零(D)正应力和剪应力均为零O(B)外力不一定最大,但面积一定最小(D)轴力与面积之比一定最大51.设一阶梯形杆的轴力沿杆轴是变化的,则在发生破坏的截面上(A)
13、外力一定最大,且面积一定最小(C)轴力不一定最大,但面积一定最小52.在连接件上,剪切面和挤压面分别于外力方向。(A)垂直,平行(B)平行、垂直53. 剪应力互等定理是由单元体的_(A)静力平衡关系(B)几何关系54.D/2 ,(A)255.(D)垂直(C)平行_导出的。(C)物理关系(D)强度条件直径为D的实心圆轴,两端受扭转力矩作用,轴内最大剪应力为 则轴内的最大剪应力变为 。T(B)4 T(C)8 T(D)16 T下图所示圆截面,当其圆心沿z轴向右移动时,惯性矩T若轴的直径改为(A)ly不变,Iz增大(C)ly增大.Iz不变(B)Iy不变,IZ减小(D)Iy减小,IZ不变弯曲内力的符号情
14、况是 。(B)弯矩相同,剪力不同 (D)弯矩和剪力都不同56. 选取不同的坐标系时,(A)弯矩不同,剪力相同(C)弯矩和剪力均相同57. 梁在某截面处,若剪力 =0,则该截面处弯矩一定为(A)极值 (B)零值C最大值 (D)最小值58. 悬臂粱受力如图所示,其中(A)AB段是纯弯曲,BC段是剪切弯曲(C)全梁均是纯弯曲59. 在下列关于梁转角的说法中, (A) 转角是横截面绕中性轴转过的角位移(B) 转角是变形前后同一横截面间的夹角(C) 转角是挠曲线之切线与横坐标轴间的夹角(D) 转角是横截面绕梁轴线转过的角度60. 在下列关于单元体的说法中, (B)AB段是剪切弯曲,BC段是纯弯曲 (D)
15、全梁均为剪切弯曲 是错误的。是正确的。(B)静载荷和动载荷(D)载荷和支反力63. 杆件发生弯曲变形时,横截面通常(A)只发生线位移(C)发生线位移和角位移64. 图示阶梯形杆受三个集中力 则三段杆的横截面上(A) 单元体的形状必须是正六面体(B) 单元体的各个面必须包含一对横截面(C) 单元体的各个面中必须有一对平行面(D) 单元体的三维尺寸必须为无穷小61. 外力包括o(A)集中载荷和分布载荷(C) 所有作用在物体外部的力62. 在一截面上的任意点处,正应力与剪应力的夹角(A)900(B)45o(C) 0°(D)为任意角o(B) 只发生角位移(D)不发生位移P作用.设AB、BC、
16、CD段的横截面面积为 A、2A、3A ,AB-I(A)内力不相同,应力相同(C) 内力和应力均相同(B) 内力相同,应力不相同(D) 内力和应力均不相同_时,虎克定律(T = £成立。(B)弹性极限(D)强度极限65.对于低碳钢,当单向拉伸应力不大于(A)比例极限(C)屈服极限66.由变形公式 I PI/EA可知EPI/ lA弹性模量(A)与应力的量纲相等(C)与杆长成正比(B) 与载荷成正比(D) 与横截面面积成反比67. 连接件剪应力的实用计算是以假设(A)剪应力在剪切面上均匀分布(C) 剪切面为圆形或方形68. 剪应力互等定理的运用条件是_(A)纯剪切应力状态.为基础的。(B)
17、 剪应力不超过材料的剪切比例极限(D) 剪切面面积大于挤压面面积(B)平衡力状态(C)线弹性范围69. 在下列关于平面图形的结论中,(A)图形的对称轴必定通过形心(C) 图形对对称轴的静矩为零(D) 各向同性材料是错误的。(B) 图形两个对称轴的交点必为形心(D) 使静矩为零的轴必为对称轴70. 在弯曲和扭转变形中,外力矩的矢量方向分别与杆轴线 。(A)垂直、平行(B)垂直(C)平行、垂直(D)平行71. 水平梁在截面上的弯矩在数值上,等于该截面(A) 以左和以右所有集中力偶(B) 以左或以右所有集中力偶(C) 以左和以右所有外力对截面形心的力矩(D) 以左或以右所有外力对截面形心的力矩o72
18、. 悬臂梁及其所在坐标系如图所示,其自由端的(B)挠度为负,转角为正(D)挠度和转角都为负(A)挠度为正,转角为负(C) 挠度和转角都为正应力状态。9o73. 图示应力圆对应的是(A)纯剪切(B)单向74. 莫尔强度理论认为材料的破坏 (A) 与破坏面上的剪应力有关,与正应力无关(B) 与破坏面上的正应力有关,与剪应力无关(C) 与破坏面上的正应力和剪应力均无关(D) 与破坏面上的正应力和剪应力均有关75. 构件在外力作用下的能力称为稳定性。D保持静止A不发生断裂B保持原有平衡状态C不产生变形76. 没有明显屈服平台的塑性材料,其破坏应力取材料的_A比例极限 PB名义屈服极限 0.2C强度极限
19、bD根据需要确定77.若约定:q向上为正,Fs、M图的Fs、M坐标指向上方,则下列论述中哪一个是正确的A由q,当梁上作用有向下的均布载荷时, dxq值为负,则梁内剪力也必为负值B由q,当梁上作用有向下的均布载荷时,dx2其弯矩曲线向上凸,则弯矩为正C若梁上某段内的弯矩为零,则该段内的剪力亦为零D若梁上某段内的弯矩为零时,则该段内的剪力不一定为零78. 一点处的应力状态是 OA过物体内一点所取单元体六个面上的应力 B受力物体内各个点的应力情况的总和C过受力物体内一点所做的各个不同截面上应力情况的总称 D以上都不对OB构件变形远远小于其原始尺寸D材料各个方向的力学性质相同79. 根据各向同性假设,
20、可以认为A材料各点的力学性质相同C材料各个方向的受力相同80.一端固定、另一端有弹簧侧向支承的细长压杆,可采用欧拉公式F2P cr = EI/I ) 2计算。是确定压杆的长度系数的取值范围:> 2 .0<0.581.值,正确的。A绕y轴 C绕z轴B 0.7<<2.0D 0.5<<0.7正三角形截面压杆, 其两端为球铰链约束,加载方向通过压杆轴线。当载荷超过临界压杆发生屈曲时,横截面将绕哪一根轴转动?现有四种答案,请判断哪一种是B绕通过形心c的任意轴D绕y轴或z轴82.有下列几种说法,你认为哪一种对?A影响杆件工作应力的因素有材料性质;影响极限应力的因素有载荷
21、和截面尺寸;影响许 用应力的因素有工作条件B影响杆件工作应力的因素有工作条件;影响极限应力的因素有材料性质;影响许用应力 的因素有载荷和截面尺寸C影响杆件工作应力的因素有载荷和截面尺寸;影响极限应力的因素有材料性质;影响许 用应力的因素有材料性质和工作条件D以上均不对。83.建立平面弯曲正应力公式% ,需要考虑的关系有A平衡关系,物理关系,变形几何关系C变形几何关系,平衡关系,静力关系B变形几何关系,物理关系,静力关系 D平衡关系,物理关系,静力关系84.根据压杆稳定设计准则,压杆得许可载荷Fpcr A。当横截面面积 A增加一倍时,n st试分析压杆的许可载荷将按下列四种规律中的哪一种变化?A
22、增加1倍B增加C增加1/2倍D压杆的许可载荷随 A的增加呈线性变化、计算题85.如图:各杆重量不计,杆端皆用销钉联接,在节点处悬挂一重W = 10KN的重物,杆横截面为A1 = A2 = 200mm2、A3 = 100 mm2,杆3与杆1和杆2夹角相同a= 45°,杆的弹 性模量为 E1=E2 = 100GPa、E3=200 GPa。求各杆内的应力。86. 一简支梁如图,在 C点处作用有集中力偶 和弯矩图。Me。计算此梁的弯矩和剪力并绘制剪力图Ka一 JKaLKe87.已知构件某点处于二向应力状态,应力情况如图,求该点处主平面的方位和主应力值,求倾角a为一37.5 0的斜截面上应力。
23、MPi488.外伸梁AD如图,试求横截面 C、B支座稍右和稍左的横截面上的剪力和弯矩。q=4liN/inBDi i ; j 1 1 1 JU i i JU i 1.C2m3ni3ni89. 一铰接结构如图示,在水平刚性横梁的B端作用有载荷F,垂直杆1, 2的抗拉压刚度分别为EiAi,E2A2,若横梁AB的自重不计,求两杆中的内力。yra ,ah.A90. T形截面的铸铁外伸梁如图, 截面B、C上的正应力最大值。横断面结构:*乙Z为形心,形心主惯性矩Iz = 2.9 X0-5m4。计算此梁在横It5Uli91.图示刚性梁CE支承。已知钢杆的横截面面积KJA端铰支,在B点和C点由两根钢杆 BD和A
24、B受均布载荷作用,梁在ADB=200mm 2, ACE=400mm2,试求两钢杆的内力。j t92. 计算图示结构 BC和CD杆横截面上的正应力值。已知CD杆为J28的圆钢,BC杆为&22的圆钢。93. 一木桩受力如图所示。柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量 E=10G Pa。AIMO叫JL F1qIC?tB如不计柱的自重,试求:(1) 作轴力图(2) 各段柱横截面上的应力(3)各段柱的纵向线应变(4)柱的总变形94. Q235钢制成的矩形截面杆,两端约束以及所承受的载荷如图示( (a)为正视图(b)为 俯视图),在AB两处为销钉连接。若已知 L =
25、 2300mm , b= 40mm , h= 60mm。材料的弹 性模量E= 205GPa。试求此杆的临界载荷。丄nttL/ LIbI 1-thtTT1三、作图题95. 试作下图杆的剪力图和弯矩图。W V V V J'士 311196. 根据简支梁的弯矩图作出梁的剪力图与荷载图。97.作梁的弯矩图。卜1缈*3m亠1口.<>c(e)20hN/inrrrtp四、判断题(略)、单选题答案1.2.3.4.5.CDCDD6.7.8.9.A D B B10.11.12.13.14.15.BDACCD16. D17. C18. B19. D20. A21. D22. D23. C24.
26、C25. D26. A27. C28. D29. D30. D31. A32. C33. C34. B35. D36. B37. C38. D39. A40. A41. B42. B43. C44. B45. A46. D47. D48. C49. B50. D51. D52. B53. A54. C55. C56. C57. A58. B59. D60. D61. D62. A63. C64. A65. A66. A67. A68. B69. D70. A71. D72. A73. C74. D75. B76. B77. C78.79.80.81.82.83.84.、计算题85.考虑静力平衡
27、由于都是铰接,杆所受重力忽略,三杆均为二力杆。应用截面法取分 离体,F1、F2、F3为杆的轴力,由静力平衡条件:耳吕m一耳sm 0;= 0耳+F匚倔抚+耳COE一附=0(1) 题有三个未知轴力,有两个静力方程,是超静定问题,需要一个补充方程(2) 几何关系 设整个杆系在荷载作用下的变形是对称的,即只有节点A的铅直位移。1u Z(3)利用变形于内力的物理关系=加2 = cos&2分(4)解联立方程组2分M =昭-a耳 Sin a耳sm a= 0 尽十F BEG十场cos a-附二0&-罠空琵=0解得:F3=5.85KNF1= F2 =2.93KN2分2分6= d = Fi/A 1
28、=14.7 MPa2分毘Ad3= F3/A 3=58.5MP a1分86.解:求支反力利用平衡方程Mb0Ma 02分33 / 29解得:MeL剪力方程:RaRbMe2分2分Rb18KNQ(x) Me/L弯矩方程:AC段Ow x < a(b)CB段Me xLa< xw L(c)MeMexL根据方程(a),剪力图是一条平行轴线的直线。根据( b)、( c)作梁的弯矩图,各是一条斜直线。最大弯矩 M max M ea/L oPbT87.解:求主应力和主平面 已知应力值:叹=4OMp a; 号=-20MP a; T=-30Mp atan 2 p1.04020求主平面方位:1分22.5 0+
29、900 = +112.5 0。则一个主平面与x的夹角a为450/2= +22.5° 根据两个主平面相互垂直,得另一个主平面方位为 求主应力值:Xy i Xy 2max/minifx2 V 240202I 4020V30 252.4 MPa32.4 MPa则主应力01=52.4Mpag3=-32.4Mp g=0求倾斜截面上的应力将已知的应力和倾角代入公式:根据垂直与零应力面地任意两个相互垂直的截面上的正应力之和不变原则, 的另一正应力。可得该倾斜面X y24020210 7.76 29.0Xycos2a x sin 2a24020”0cos 75 211.24 MPa30 sin 75
30、0sin 2a 24020sinxcos2a229.0 7.767530cos75036.8 MPa40 2011.231.2 MPa根据剪应力互等定理得:36.8 MPa88.解:(1 )求支反力由平衡方程MbMaqRa6 1 Ra6KNRb23 / 29(2)求截面C上的剪力Q和弯矩MC 由截面C的左侧得:Qc 642 2KNMc 624 2 1 4KN m(3)求截面从截面B左的左侧上的外力得:B左和B右的剪力和弯矩Qb 左=616= 10kNM b左6 4 4 4 28KN m从截面B右的左侧的外力得:Qb右 = 64 18=8kNM B右= 68KN m89. 解:MaFN1a Fn2 2a F2a变形协调方程:2 L1L22Fn1LE1A1Fn2LE2A2F N12F1 4E2 A2 / E1A1F N24F4 E1A1 / E2A290.由图可见两截面 B、C上的弯矩分别为解:(1 )作弯矩图MbMc8KN m(2)计算截面B上的正应力2分12KN m3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版智能门窗安全性能检测与认证合同3篇
- 二零二五版健身俱乐部健身用品定制与销售合同2篇
- 2025版美术教师教育公益活动聘用合同协议4篇
- 二零二五年度医疗健康领域投资借款合同大全4篇
- 二零二五版摩托车售后服务网点建设与运营合同4篇
- 2025年度智能化中央空调系统安装及维护服务合同协议4篇
- 2025年度可再生能源暖气供应合同范本4篇
- 2025版腻子乳胶漆施工与色彩设计合同范本3篇
- 2025版高端住宅内墙艺术涂料施工合同范本4篇
- 2025年高校教授学术团队建设与管理合同4篇
- 《Python编程基础与应用》面向对象编程
- 高考满分作文常见结构完全解读
- 理光投影机pj k360功能介绍
- 六年级数学上册100道口算题(全册完整版)
- 八年级数学下册《第十九章 一次函数》单元检测卷带答案-人教版
- 帕萨特B5维修手册及帕萨特B5全车电路图
- 系统解剖学考试重点笔记
- 小学五年级解方程应用题6
- 云南省地图含市县地图矢量分层地图行政区划市县概况ppt模板
- 年月江西省南昌市某综合楼工程造价指标及
- 作物栽培学课件棉花
评论
0/150
提交评论