传感器技术试验指导书_第1页
传感器技术试验指导书_第2页
传感器技术试验指导书_第3页
免费预览已结束,剩余25页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、?传感器技术?实验指导书07级微电子专业刘海浪编桂林电子科技大学00 九年五月目录实验一应变式传感器特性测试2实验二电感式传感器特性测试7实验三霍尔传感器应用实验13实验四传感器应用的计算机仿真16实验一应变式传感器特性测试实验目的1、掌握金属箔式应变片的应变效应,单臂电桥工作原理和性能;2、了解学习全桥测量电路的构成及其特点、优点;3、比拟单臂电桥与全桥的不同性能、了解其特点。实验用器件与设备1、应变式传感器实验台 ;2、传感器实验箱;3、砝码;4、跳线;5、万用表等。三、实验原理直流电桥原理:在进行金属箔式应变片单臂、半桥、全桥性能实验之前,我们有必要 先来 介绍一下直流电桥的相关知识。电

2、桥电路有直流电桥和交流电桥两种。电桥电路的主 要指标是 桥路灵敏度、非线性和负载特性。下面具体讨论有关直流电路和与之相关的这几 项指标。1、平衡条件直流电桥的根本形式如图1-1所示。R, R, R3, R为电桥的桥臂电阻,R.为其负载(可 以是测量仪表内阻或其他负载 ) 。当 R_> X 时,电桥的输出电压 V0 应为R1 R3 、V0=E()R1 + R2 R3 + R4当电桥平衡时,V0=0,由上式可得到RRFRR,或(1-1 )R1 R3R2 R4R1 今y R2-.I、RLA < rryiwx *亠/IItlX jrR3 JR !、/X、j<TJB'wE图1-

3、1直流电桥的根本形式式1-1秤为电桥平衡条件。平衡电桥就是桥路中相邻两桥臂阻值之比应相等,桥路相邻臂阻值之比相等方可使流过负载电阻的电流为零。2、平衡状态单臂直流电桥:所谓单臂就是电桥中一桥臂为电阻式传感器,且其电阻变化为R,其它桥臂为阻值固定不变,这时电桥输出电压 Vo工0 此时仍视电桥为开路状态,那么不平衡电桥输出电压V0为IR3< R1 j(1-2)R1R1)< R3丿设桥臂比n=R八,由于 R?R,分母中空巴可忽略,输出电压便为R1R1V"o=这是理想情况,式1-2 为实际输出电压,由此可求出电桥非线性误差。实际的非线性特r=V o VoII3I R1 丿 =i

4、R丿Vo;+Ar1 + r2、=R1R1 jf +孤+1 + nIR1性曲线与理想线性曲线的偏差秤为绝对非线性误差。那么其相对线性误差r为:(1-3)由此可见,非线性误差与电阻相对变化 R1有关,当R1较大时,就不可忽略误差了.R1F面来看电桥电压灵敏度 S。在式1-2 中,忽略分母中Rl项,并且考虑到起始 上式表明,Vo与 Ri成线性关系,比单臂电桥输出电压提高一倍,差动电桥无非线性误差,平衡条件曇唱,从式1-2可以得到(1-4)e nR(1 n)2 Ri电桥灵敏度的定义为R1R1n(1 n)2(1-5)R1R1当n=1时,可求得Sv最大。也就是说,在电桥电压E确定后,当R=R, F3=F4

5、时,电桥电 压灵敏度最高此时可分别将式1-2 、 1-3 、 1-4 、 1-5 化简为:R11 2R(1-6)Ri2岀R1(1-7)R11E4(1-8)(1-9)R1由上面四式可知,当电源电压 E和电阻相对变化 R 定时,电桥的输出电压,非线'生误差,电压灵敏度也是定值,与各桥臂阻值无关。差动直流电桥半桥式:假设图1-1中支流电桥的相邻两臂为传感器,即R1和R为传感器,并且其相应变化为R和 R,那么该电桥输出电压 V工0,当厶R=AR,Ri=R, R=R时,那么得 0=1 E 込2 R而且电压灵敏度 S 为SV= -E2比使用一只传感器提高了一倍,同时可以起到温度补偿的作用。双差动直

6、流电桥全桥式:假设图 1-1 中直流电桥的四臂均为传感器,那么构成全桥差动电路。假设满足厶Ri=A F2=RA"贝U输出电压和灵敏度为Vo=EAS V = ERi由此可知,全桥式直流电桥是单臂直流电桥的输出电压和灵敏度的4 倍,是半桥式直流电桥的输出电压和灵敏度的 2 倍。四、实验方法与步骤一、全桥电路性能测量:1. 关闭实验台总电源,将红色线接入 P1或者P5 口,黄色线接入P2或者P3 口,将黑色 线 接入 P4 或者 P8 口,将蓝色线接入 P6 或 P7 口;2. 用导线把全桥电路信号处理模块的 T8 口接到信号输出模块的T4或T5,然后用信号线 连 接信号输出模块的BN 接

7、口和多通道数据采集模块的通道 5上。3. 用电源线将根底实验台上多路输出电源引接到传感器开放电路主板上;把主板上的5V、+ 12V、 12V 勺电源开关拨到 ON4. 用万用表测量T8 口的对地电压,如果该点电压超过 5V,那么调节电阻R22的阻值以调节 放大电路的零点,尽量使输出为零可调到 0.5V 以下即可,然后在应变压办实验 台 上放置法码,观察T8 口的输出电压,使其始终不超过 5V,如果有超过的,那么调节 R21 和 R9 的阻值,使输出不超过 5V;5. 调整完毕后,从质量为 0g 开始,先测一个数据,再依次添加不同质量的砝码到托盘上,用万用表测量T8 口相应的电压值,因为应变片的

8、量程是5kg,切勿放置过大质 量物体在托盘上,更不可按压托盘。6. 在托盘上放置一只砝码,读取电压数值,依次增加砝码和读取相应的电压值,直到 砝码加完,记下实验结果填入如表 1-1 类似的表中,关闭电源。表 1-1 全桥实验数据样表重量g电压mV7. 根据表1-1计算系统灵敏度S二:U w 输出电压变化量与重量变化量之比。8. 绘出电压和质量之间的关系曲线,并对其进行线性拟合,求出拟合直线,记下斜率K和截距b待用v=km+b二卜全桥电路的应用称重实验:1. 运行Labview主程序,翻开“全桥电路的应用一物体重量测量程序,建立实验环境2. 在实验界面上输入对应通道数,然后分别输入上步拟合得到的

9、k值和b值,运行程序;3. 在托盘上分别放置不同质量的砝码,在实验界面可看到一个测量的质量值,分别记录实验测量值和托盘上实际放置的法码的质量,比拟误差,如果误差过大请重新计算k值和b值;7.计算实际质量与程序测量得到的质量之间的实验误差,分析产生误差的原因实验二电涡流传感器特性测试及应用预习要求:1、 学习理解电涡流传感器的结构及工作原理,并掌握电涡流传感器用于位移测量时的测量 电路和测试原理。2、根据实验要求,作好实验前的准备测试方法及测试点选择、数据记录的格式等、实验目的1、了解电涡流传感器的结构、特点,掌握其工作原理和使用方法;2、 通过测量电涡流传感器的输入输出关系曲线,深入理解电涡流

10、传感器的特性及其指标的 含义;3、利用电涡流传感器进行传感器静态特性的测量;4、利用机械结构、传感器、数据采集卡、虚拟仪器平台构建测试系统。实验原理1、电涡流的形成原理如图2-1所示,由物理学知识可知,假设在线圈中通入交变电流I,在线圈周围的空间就产生了交变磁场i,将金属导体置于此交变磁场范围内,导体外表层产生涡电流,涡电流 的高频磁场e以反作用于传感器电感线圈,从而改变了线圈的阻抗Zl或线圈的电感和品质因素。Zl的变化取于线圈到金属板之间的距离X、金属板的电阻率3、磁导率卩以及激励电流的幅值A和频率f。L高频交变磁场L涡流磁场i高频鼓励电流金属导体图2-1电涡流传感器的工作原理2、电涡流位移

11、传感器原理电涡流位移传感器是以高频电涡流效应为原理的非接触式位移传感器。前置器内产生 的高频振荡电流通过同轴电缆流入探头线圈中,线圈将产生一个高频电磁场。当被测金属体靠近该线圈时,由于高频电磁场的作用,在金属外表上就产生感应电流,既电涡流。该电流产生一个交变磁场,方向与线圈磁场方向相反,这两个磁场相互叠加就改变了原线圈的阻抗。这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体外表的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,那么线圈和金属导体系统的物理性质可由金属导体的电导率6、磁导率E、尺寸因子T、头部体线圈与金属导体外表的距离 D、

12、电流强度I和频率3参数来描述。 那么线圈特 征阻抗可用Z=Ft, E , 6 , D, I, 3 函数来表示。通常我们能做到控制t, E , 6 , I, 3这几个参数在一定范围内不变,那么线圈的特征阻抗 Z就成为距离D的单值函数, 虽然它整个函数是一非 线性的,其函数特征为“ S'型曲线,但可以选取它近似为线性的一段。于此,通过前置器对信号进行处理,将线圈阻抗 Z的变化,即头部体线圈与金属导体 的距离D的变化转化成电压或电 流的变化。输出信号的大小随探头到被测体外表之间的间距的变化而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。当被测金属与探头之间的距离发

13、生变化时,探头中线圈的磁场强度也发生变化,磁场强度的变化引起振荡电压幅度的变化,而这个随距离变化的振荡电压经过检波、滤波、线性补偿、放大归一处理转化成电压电流变化,最终完成机械位移间隙转换成电压电 流。所以探头与被测金属体外表距离的变化可通过探头线圈阻抗的变化来测量。前置器根据探头线圈阻抗的变化输出一个与距离成正比的直流电压。图2-2为电涡流传感器的工作原唱理示意图。主要技术指标:被测图2-2电涡流传感器工作示意图供电电压探头直径线性量程输出方式+ 24V11mm4mm1-5V3、最小二乘法拟合原理:给定平面上一组点(xi,f(xi) ) (i=1,2,3 , n),用直线拟合。即求得f(x)

14、,使得偏差厶Vm到达最小。三、实验仪器和设备i ?计算机i台3 ?数据采集模块1台5电源模块1台2 . LabVIEW8.2以上版本1套4 .电涡流特性实验模块1台6. 操作工具1套四、实验内容与实验步骤1、实验前准备及电路的连接(1) 关闭数据采集卡电源,将电涡流传感器连接到采集卡的数据采集一个AD通道上。注意不要在带电的情况下从采集卡上插拔传感器,以免对采集卡和传感器造成损坏。(2) 电涡流传感器的工作电源为24V,把电涡流传感器的电源接到试验台的 24V电源口,并把 数据线接到采集卡的某一通道上,接通试验台和数据采集卡的电源。设定好“通道选择、“采样频率、“采样长度等参数后点击如下列图2

15、-3所示的运行按钮运行程序,观察各局部运行灯的亮灭情况。运行按钮桂團两图2-3程序运行按钮(4) 将千分尺归零,将滑块上反射圆片紧紧靠在电涡流探头外表,观察此时的电压值。(5) 滑块渐渐远离传感器,观察电压数值的变化,观测传感器的最大测量距离。2、测绘并求出传感器的线性区范围:电涡流传感器的线性区定义为:不在此测量范围内时,其函数将不成线性关系。(1) 联接好测量系统中传感器及其采集卡等模块的通道号及其电源,调整滑块到一个初始位置,记录下读数X0。(2) 翻开“试验一电涡流静态特性试验.vi ,设置每次移动千分尺的距离为0.3mm,将这两个数值输入到“实验一电涡流静态特性试验.vi 的“采样间

16、隔控制变量里。图2-4为电涡流静态特性曲线的程序截图O设定好“通道选择、“采样频率、“采样长度等参数实验一电涡流传感器静态特性测距实验尙出电壬平沟值/至如 ?0厂输出电IE罕均值丿单应5000-4000G攵采集1F 1 v 1 |030007000 霸出电压平均佢/单控0用6000弟第1次采 束第2捉采 集&次采集| |0记明:虫验前先设走軒采齐巨隔?和起史坐描 注惹 期帛选的电满诉i翹鼎的建世范围理论也合曲遥M实际数字狙合H25 SO 75 100 12S ISO 175 SOO 225 250 27S 300 325 390 3T5采样可隔/单拉mm传感器壤性拟合曲戎工烁距麗 I代

17、表电压输岀电压平均値£单I至吋第歉采集0通道迤挥农荷数率起上.土芍f甲应nn采祎频舉选释IWiz l-SIdiiZ"aiiLz3- 25H114- MJdii宇 IWkM-J.0采佯问隅f甲宜nn程序再止停止图2-4电涡流静态特性试验(3) 运行“试验一电涡流静态特性试验.vi ,点击“第1次采集按钮,指示灯亮后,程序将自动记录对应电涡流传感器的读数。(4) 将千分尺向远离探头方向移动 0.3mm,点击“第2次采集按钮,依次改变测量的距离进行30次测量,采集30组数据。注:图上按钮可反复使用,也可只反复使用一个,将数据记录在Excel表格中,进行绘图。(5) 数据采集完成后

18、,将采集到的30组位移与电压数据在Excel中进行电涡流传感器的特 性曲线的绘制。(6) 观测出传感器的线性区范围,并对线性区进行拟后,将拟合直线的表达式记录,并同时记录拟合直线、斜率K和截距b待用3、利用测得结果进行距离反测和误差分析:(1)翻开“试验一电涡流距离测量及误差分析试验.vi ,图2-5为电涡流距离测量及误 差分析程序截图。设定好“通道选择、“采样频率、“采样长度等参数丈验一电涡流传感器距离测量试验及误差分析实验输出电压平均值/单位皿第兀鬲| ? fo理论拟仓曲线精出电压平均值/单位呻第2汝采集 ? o ''输出电压平均值/单位翻第3决采集 .卜第4枚采集|输出电

19、圧平均值/单位賊 0-辅出电JE半均值/单住賊第5枕采集米样间隔/单位 呗输出电压甲均谄/ 单悅TW第§枕采集(? | d输出电压平均10/单位TUV第了祝采集 I ? |o''''输出电压平均值/单位mw 第8次采集| ?输出电压平均值/单位唤 第9次采集| ?输岀电匝平均值/单fenAMiott 采集 I ? IT通道注择:/i釆样频率無样频率选择0-lkhz1- 5kh:2- 10khiJ-25khi 4-60khi 匸 1nn irkA起点坐标/ /0按实好墓设定标-样间值降程厨荐止停止把线性世舍表达式牡跑 4B'中的 KH却B的H境入

20、“斜宰k和“註距貿时仝搭內,然后点 “距 离 计算"檢忸谜行距离旳测童斜军Krj'O'截距b身0当前电压0距离计詩證离测量值距咼计算II|o误差井析误差分析-二二? i ?1?i0. 00000 mrr. 0.00000|o千分尺读书起始坐标当前怪移当前电压测童值相对误差传感器线性拟合曲线毗表距离卅表电压实际數宇拟舍m图2-5电涡流距离测量及误差分析程序(2) 设置千分尺读数到观测到的线性区的起点处,并将此值输入的实验界面的起点坐标框 中,计算采样间隔为整个线性区长度的 1/10 ;(3) 照此采样间隔的值调节千分尺,分别点击实验界面中的10个采集按钮,采集10组数据

21、,直接采集在实验界面中,不必再记录在Excel中。(4) 数据米集完成后,点击拟合按钮,得出线性区拟合线在波形显示框中。(5) 将上一步中得到的拟合线的斜率 K和截距b填入实验界面相应的框中,点击距离计算 得到由实验程序反测出的千分尺的距离读数。(6) 将千分尺的实际读数填入界面的最后一行的相应位置,点击误差分析按钮,得到实验 反测的相对误差。(7) 将具有结果的整个实验界面拷入 Wor (文档备用。五、实验报告要求1、拷贝实验系统的运行结果页面,插入到word格式的实验报告中 2、求出所用传感器的线性区范围K和截距b3、对所用传感器的输出特性进行线性拟合,求出拟合直线、斜率4、求出所用传感器

22、的线性误差和灵敏度。六、参考与提示1、测试系统的输入输出特性曲线-V (mV)图2-7测试系统的输入输出特性曲线2、电涡流传感器的静态特性指标分析方法(各参量如上图2-7中)线性区范围:x i? X2(mm)对线性区对应的电压值:Vi? V (mV)线性误差:.Vm m 100%V2 -ViV2 -Vi灵敏度:2 1 (mV/mm)X2片七、思考题1、电涡流传感器为什么可作为位移传感器用 ?2、电涡流的大小还与那些因素有关?3、试想电涡流传感器还可以用来测量那些物理量 ?实验三 霍尔传感器的应用实验实验目的:1、了解霍尔开关集成传感器的工作原理和应用;2、掌握霍尔传感器的根本特性;3、学习霍尔

23、传感器构成的应用电路的根本原理和设计方法。根本原理:图3- 1是霍尔开关集成传感器的 内部结构框图。当有磁场作用在传感器上时,根据霍尔效应原理,霍尔元件输出霍尔电压 Vh,该电压经放大器放大后,送至施密特整 形电路。当放 大后的Vh电压大于“开启阀值时,施密特整形电路翻转,输出高电平 ,使输出三极管导通。 当磁场减弱时,霍尔元件输出的 Vh电压很小,施密特整形电路再 次翻转,输出低电平,输出 三极管关闭。这样,一次磁场强度的变化,就使传感器完成一次开关动作。当被测电机飞轮上装有N只磁性体时,飞轮每转一周磁场就变化N次,霍尔传感 器输出的电平也变化N次,通过计算即可知道电机的转速。存;I:元件存

24、;1:元件放太;放太;格形格形够地够地图3- 1霍尔开关集成传感器的内部结构三 实验元件和设备:1实验电路板;2电机组件;3霍尔开关传感器 CS3020 ;4. 4.7K Q 电阻;5跳线假设干;6. 示波器或虚拟平台的实验程序。四 . 实验步骤:先用工具将实验用电机和飞轮组件固定到实验主板上,电机输入端接入主板上的Motor 端口上。一 、用现成的实验电路小模块验证测量:1、把各电源开关拨到 OFF 接好并关闭主板电源;2、把实验电路模块插到实验主板的面包板上,霍尔传感器的探头尽量靠近电机转盘 不大于 5mm ;3、把主板上的 + 5V, GND 用导线引到电路模块相应引脚上。4、把电路模块

25、上信号输出端 OUT 脚引到主板的输出口 T4 或 T5 口上,然后将数据线 接 入实验台的信号采集模块上通道 5 或 6。5、在电脑上翻开相关的测试用实验程序界面。6 把主板上的 + 12V 、+5V 电源开关翻开,把运行模式开关打到 Motor 档,把 Power Surply 开关拨到 ON 。7 、 运行程序,开始电机转速的测量。8、 调节电阻 R28 的阻值即可调节电机的转速。9、 由霍尔传感器输出信号脉冲的频率就可以计算出直流电机的转速。如磁铁个数为 N ,转速为 n, 脉冲频率为 f, 那么有: n=f/N 。通常,转速的单位是转 /分钟,所以要 在上述公 式的得数再乘以 60,

26、才是转速数据,即 n=60X f/N 。设备FT开血迎昨ft數据读麋鯛关闭函数返回rs, D-成功,-1-失煎错逞号 eaIUSOOO0003500XJ0G -5C0 *1 口仙-Dn |0 lr0lYawefom SrsjihMS 转Q0通谥區握11STOP实验三霍尔磁性开关的电机转速测量实验频军档位选择0 = IKKi:来祥頻军 1 = 5KJU ;2 = IQKKz ;3 = 25KKi:4三刃即U;采禅氏度'1 lr5 = lOOOi ;图3-5实验程序窗口二、手动自搭电路进行测量:1. 按模块上的电路,利用给定的元器件自行设计自搭电路,在实验主板的面包板上搭建好实验电路,并仔

27、细检查接线;注意霍尔传感器的探头尽量靠近电机转盘不大于5mm2、其它步骤同上 3? 9中。五. 思考题:1、霍尔传感器的根本特性及其根本特性曲线如何;2、说明本实验中的霍尔传感器是如何应用霍尔传感器的特性实现正负电平转换的实验四传感器应用的计算机仿真注:请准备U盘,自行将先前传给你们的软件 (Multisim )拷贝带上参加实验!实验目的:1、进一步掌握传感器应用电路的组成和设计原理及方法 ;2、了解计算机在传感器技术中的应用及完成仿真的方法 ;3、了解霍尔接近开关电路的构成和根本工作原理。根本原理:在计算机上进行传感器技术方面的实验,内容之一就是传感器应用电路的仿真, 对传 感器应用电路的仿真的好处在于,可以在设计应用电路的时候不受实验室仪器设 备和电子 元器件的限制,而且可以在短时间内得到实验结果。本实验以“霍尔接近开关电路的计算机仿真为内容进行实验,实验是在上一实 验三 中了解了霍尔传感器的特性及开关电路的原理的根底上进行的,霍尔传感器的静 态特性曲 线如图4-1所示,图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论