版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、014年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1(3分)a(a)的相反数是()AB.a2C.|D.(3分)下列图形中,是中心对称图形的是( )BC.D.3(3分)如图,在边长为1的小正方形组成的网格中,ABC的三个顶点均在格点上,则nA=( )ABC.4.(3分)下列运算正确的是( )A.5aab4+a6÷a=a4(2b)=a5b35(3分)已知1和O的半径分别为2cm和3cm,若O1O2=7cm,则O1和O2的位置关系是( )A外离B.外切C内切D.相交6.(分)计算,结果是( )Ax2B+2C.7(3分)在一次科技作品制作比赛中,某小组八件作品的
2、成绩(单位:分)分别是,0,9,,9,9,8,对这组数据,下列说法正确的是()A.中位数是8B.众数是9C平均数是D.极差是8(3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABD,转动这个四边形,使它形状改变,当B=90°时,如图1,测得AC=2,当=60°时,如图,AC=( )A.B.2C.29.(3分)已知正比例函数y=kx(<0)的图象上两点(x1,1)、B(2,y2),且1x2,则下列不等式中恒成立的是()Ay12>0By1+y0.y1y20D.y2<010(3分)如图,四边形BCD、CEG都是正方形,点G在线段CD上,连接BG、,D和F
3、G相交于点O,设AB=a,G=(ab).下列结论:BCGDCE;BGDE;=;(a)2EF=b2SDG其中结论正确的个数是( )A.4个B.个C个D.1个二、填空题(共小题,每小题3分,满分8分)11(3分)BC中,已知A=°,B0°,则C的外角的度数是 °.12(3分)已知OC是AO的平分线,点在OC上,PDO,EOB,垂足分别为点D、E,0,则P的长度为 .13(分)代数式有意义时,x应满足的条件为 14.(分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为 .(结果保留)15.(分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”
4、写出它的逆命题: ,该逆命题是 命题(填“真”或“假”)16.(3分)若关于的方程x2+2mx+3m=0有两个实数根x1、x2,则(x2+1)2的最小值为 三、解答题(共9小题,满分12分)17(9分)解不等式:523,并在数轴上表示解集.18.(9分)如图,ABCD的对角线、BD相交于点,EF过点O且与B,D分别相交于点E、F,求证:OECOF.19.(1分)已知多项式A(+2)2(1x)(2+x)3.()化简多项式;(2)若(x+1)2=6,求的值0(0分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远90.18
5、三级蛙跳12a一分钟跳绳80.投掷实心球b.32推铅球50.10合计01(1)求,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.1(2分)已知一次函数y=k6的图象与反比例函数的图象交于A、两点,点A的横坐标为2(1)求的值和点A的坐标;(2)判断点B所在象限,并说明理由.2(1分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是40千米,普通列车的行驶路程是高铁的行驶路程的
6、.3倍(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米时)是普通列车平均速度(千米/时)的倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度23.(分)如图,AB中,AB=AC=4,cos=(1)动手操作:利用尺规作以A为直径的O,并标出O与的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,求证:=;求点到的距离.24.(14分)已知平面直角坐标系中两定点(1,0)、(4,0),抛物线yax2+bx(a0)过点A,B,顶点为C,点P(m,n)(n0)为抛物线上一点(1)求抛物线的解析式和顶点C的坐标;(2)当A为钝角时,求的取值范
7、围;(3)若m,当APB为直角时,将该抛物线向左或向右平移(0<)个单位,点C、平移后对应的点分别记为C、P,是否存在t,使得首位依次连接A、P、C所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由25.(4分)如图,梯形ACD中,B,ABC=0°,AB=3,=4,C点为线段D上一动点(不与点C重合),BCE关于B的轴对称图形为BFE,连接CF设CE=,BCF的面积为1,CE的面积为S2()当点F落在梯形ABCD的中位线上时,求的值;(2)试用表示,并写出x的取值范围;(3)当BF的外接圆与AD相切时,求的值214年广东省广州市中考数学试卷参
8、考答案与试题解析 一、选择题(共10小题,每小题3分,满分3分)1.(分)a(a0)的相反数是()A.aB.a2C|aD.【考点】14:相反数菁优网版权所有【分析】直接根据相反数的定义求解【解答】解:a的相反数为a故选:A【点评】本题考查了相反数:a的相反数为a,正确掌握相反数的定义是解题关键2(3分)下列图形中,是中心对称图形的是()A.C.【考点】5:中心对称图形菁优网版权所有【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题
9、意;故选:C.【点评】本题考查了对中心对称图形的定义,能熟知中心对称图形的定义是解此题的关键3.(分)如图,在边长为1的小正方形组成的网格中,BC的三个顶点均在格点上,则nA=( )A.BC.【考点】1:锐角三角函数的定义菁优网版权所有【专题】24:网格型.【分析】在直角A中利用正切的定义即可求解【解答】解:在直角AB中,ABC=90°,tA=故选:D【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边4(3分)下列运算正确的是( )A.5b=4.+=C.a6÷a2=a(a2)=ab3【考点】35:合并同类项;
10、4:幂的乘方与积的乘方;48:同底数幂的除法;6:分式的加减法.菁优网版权所有【专题】11:计算题【分析】A、原式合并同类项得到结果,即可做出判断;B、原式通分并利用同分母分式的加法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式ab,故选项错误;B、原式=,故B选项错误;C、原式=a4,故C选项正确;、原式=a6b3,故D选项错误.故选:C【点评】此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.(3分)已知1和2的半径分别
11、为2cm和3c,若O17cm,则和O2的位置关系是( )A.外离外切C.内切D.相交【考点】MJ:圆与圆的位置关系菁优网版权所有【分析】由O与2的半径分别为3m、,且圆心距O1Om,根据两圆位置关系与圆心距d,两圆半径,r的数量关系间的联系即可得出两圆位置关系【解答】解:O1与O2的半径分别为3cm、c,且圆心距O1O=7cm,又3+<7,两圆的位置关系是外离故选:A.【点评】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距,两圆半径R,r的数量关系间的联系(3分)计算,结果是( )x2B.x+C.【考点】53:因式分解提公因式法;66:约分.菁优网版权所有【专题】1:计
12、算题;44:因式分解【分析】首先利用平方差公式分解分子,再约去分子分母中得公因式【解答】解:=x+2,故选:.【点评】此题主要考查了约分,关键是正确把分子分解因式.(3分)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,0,9,8,9,9,8,对这组数据,下列说法正确的是( )中位数是B.众数是9C.平均数是8D.极差是【考点】2:加权平均数;W4:中位数;W5:众数;W6:极差菁优网版权所有【专题】11:计算题.【分析】由题意可知:总数个数是偶数的,按从小到大的顺序,取中间两个数的平均数为中位数,则中位数为8.;一组数据中,出现次数最多的数就叫这组数据的众数,则这组数据的
13、众数为;这组数据的平均数(+1+8+79+98)÷8=8375;一组数据中最大数据与最小数据的差为极差,据此求出极差为3【解答】解:A、按从小到大排列为:7,7,8,9,9,1,中位数是:(8+9)÷28,故选项错误;B、出现了次,次数最多,所以众数是,故B选项正确;C、平均数=(7+10+98+7+99+8)÷8=8.75,故C选项错误;D、极差是:103,故D选项错误故选:B【点评】考查了中位数、众数、平均数与极差的概念,是基础题,熟记定义是解决本题的关键.8(分)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当B=9
14、0°时,如图1,测得AC=2,当B=60°时,如图,A=( )AB2C.D.2【考点】KM:等边三角形的判定与性质;:勾股定理的应用;LE:正方形的性质菁优网版权所有【分析】图中根据勾股定理即可求得正方形的边长,图根据有一个角是6°的等腰三角形是等边三角形即可求得【解答】解:如图,AB=C=D=DA,B=0°,四边形ABCD是正方形,连接C,则AB2BC=AC2,A=BC=,如图2,=°,连接AC,ABC为等边三角形,CBC【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键9.(3分)已知正比
15、例函数=k(<0)的图象上两点A(x1,y1)、B(x,2),且1<x2,则下列不等式中恒成立的是( ).y+yy1+0y1y2Dy1y2<0【考点】:正比例函数的图象;F:一次函数图象上点的坐标特征.菁优网版权所有【分析】根据k0,正比例函数的函数值y随的增大而减小解答【解答】解:直线y=k的<0,函数值y随x的增大而减小,x1<x,y1>,y1y>0.故选:C【点评】本题考查了正比例函数图象上点的坐标特征,主要利用了正比例函数的增减性10.(3分)如图,四边形ABC、EFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设A=a
16、,CG(a>b)下列结论:BD;BGDE;;(b)SEF=b2SDGO其中结论正确的个数是( )A个B.3个C2个D个【考点】KD:全等三角形的判定与性质;LE:正方形的性质;S9:相似三角形的判定与性质菁优网版权所有【专题】1:压轴题【分析】由四边形ACD和四边形CEFG是正方形,根据正方形的性质,即可得BC=,CGE,B=ECG0°,则可根据S证得GDCE;然后延长BG交E于点H,根据全等三角形的对应角相等,求得CE+G=90°,则可得D由G与C相似即可判定错误,由G与O相似即可求得.【解答】证明:四边形BC和四边形CEG是正方形,B=DC,GE,BCDECG=&
17、#176;,CG=DCE,在BCG和DCE中,,BCGDCE(AS),故正确;延长G交DE于点,BCGDCE,CBG=CE,又CBG+BG=9°,CDE+DGH90°,HG90°,BHE;BDE故正确;四边形GCEF是正方形,C,=,是错误的.故错误;DCEF,GO=OEF,GODFOE,ODOF,=()2=()2,()2SEFO=b2SDGO.故正确;故选:B.【点评】此题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定和性质,直角三角形的判定和性质 二、填空题(共6小题,每小题3分,满分1分)1.(3分)ABC中,已知A60°,=80
18、176;,则C的外角的度数是 40°【考点】K8:三角形的外角性质.菁优网版权所有【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【解答】解:=60°,B=80°,C的外角=A+B60°+8°=140°.故答案为:1.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.12.(3分)已知OC是AO的平分线,点P在上,POA,PEOB,垂足分别为点D、E,P=1,则PE的长度为 10 .【考点】:角平分线的性质菁优网版权所有【分析】根据角平分线上的点到角的两边距离相等可得P
19、EPD.【解答】解:C是B的平分线,DO,PEOB,EPD=10.故答案为:10【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观13(3分)代数式有意义时,应满足的条件为 x±1 .【考点】62:分式有意义的条件菁优网版权所有【分析】根据分式有意义,分母等于0列出方程求解即可【解答】解:由题意得,|x|1,解得±1.故答案为:x±1【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零.4.(分)一个几何体的三
20、视图如图,根据图示的数据计算该几何体的全面积为4 .(结果保留)【考点】MP:圆锥的计算;U3:由三视图判断几何体菁优网版权所有【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积【解答】解:如图所示可知,圆锥的高为,底面圆的直径为,圆锥的母线为:,根据圆锥的侧面积公式:rl××5=15,底面圆的面积为:r2=9,该几何体的表面积为24故答案为:4.【点评】此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.15.(3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等”写出它的逆命题:如果两个三
21、角形的面积相等,那么这两个三角形全等,该逆命题是 假命题(填“真”或“假”).【考点】:命题与定理菁优网版权所有【分析】交换原命题的题设和结论即可得到该命题的逆命题【解答】解:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的面积相等,那么这两个三角形全等;假【点评】本题考查逆命题的概念,以及判断真假命题的能力以及全等三角形的判定和性质.16.(3分)若关于x的方程x2+2mx+2+3=有两个实数根x1、2,则x1(x2+x1)+x2的最小值为 【考点】AB:根与系数的关系;H7:二次
22、函数的最值菁优网版权所有【专题】16:压轴题;4:判别式法.【分析】由题意可得=b2a0,然后根据不等式的最小值计算即可得到结论【解答】解:由题意知,方程x2+2mx+m2+m2=有两个实数根,则=b24a4m24(m2)=812m0,m,x1(x2+x1)+2=(x2x1)2x12(2m)2(m3m2)32m(m2m+)2=3(m)2 ;当m=时,有最小值;<,m成立;最小值为;故答案为:.【点评】本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题总结一元二次方程根的情况与判别式的关系:()>方程有两个不相等的实数根;()=0方程有两个相等的实数根;(3)<
23、0方程没有实数根 三、解答题(共9小题,满分102分)17(9分)解不等式:53,并在数轴上表示解集.【考点】4:在数轴上表示不等式的解集;C6:解一元一次不等式.菁优网版权所有【分析】移项,合并同类项,系数化成即可【解答】解:x23x,移项,得53x2,合并同类项,得x2,系数化成,x1,在数轴上表示为:【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.1.(9分)如图,ABD的对角线C、BD相交于点,F过点O且与AB,CD分别相交于点E、F,求证:OEC.【考点】K:全等三角形的判定;L5:平行
24、四边形的性质.菁优网版权所有【专题】4:证明题.【分析】根据平行四边形的性质得出A=O,ABC,推出EO=FO,证出OE即可【解答】证明:四边形ABCD是平行四边形,OA=C,BCD,EA=CO,在AE和CF中,AOCF()【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是根据平行四边形的性质得出AO=CO.1.(10分)已知多项式A(x2)2+(x)(x)3()化简多项式A;()若(1)=6,求A的值.【考点】2:平方根;4J:整式的混合运算化简求值菁优网版权所有【专题】11:计算题【分析】(1)先算乘法,再合并同类项即可;(2)求出+1的值,再整体代入求出即可
25、.【解答】解:(1)=(x+2)2+(1x)(2x)3=x24x+42+2xx3=3x+3;(2)()2=,x+1±,A=3x3(x+)±3A=±3.【点评】本题考查了整式的混合运算和求值的应用,主要考查学生的化简和计算能力,题目比较好20.(0分)某校初三(1)班5名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远90.三级蛙跳2一分钟跳绳8.16投掷实心球0.32推铅球50.10合计501(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在
26、选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率【考点】!6:简单的枚举法;VB:扇形统计图;X7:游戏公平性.菁优网版权所有【专题】27:图表型【分析】(1)根据表格求出a与b的值即可;(2)根据表示做出扇形统计图,求出“一分钟跳绳”对应扇形的圆心角的度数即可;()列表得出所有等可能的情况数,找出抽取的两名学生中至多有一名女生的情况,即可求出所求概率.【解答】解:(1)根据题意得:a=1(0.18+0.16+.+.0)=0.2;b×.32=6;()作出扇形统计图,如图所示:根据题
27、意得:360°×0.67.°(3)男生编号为、B、,女生编号为D、,由枚举法可得:AB、AC、D、E、B、D、B、C、CE、D共0种,其中D为女女组合,抽取的两名学生中至多有一名女生的概率为:.【点评】此题考查了游戏公平性,扇形统计图,列表法与树状图法,弄清题意是解本题的关键21.(1分)已知一次函数ykx的图象与反比例函数y=的图象交于A、B两点,点A的横坐标为.()求k的值和点A的坐标;()判断点B所在象限,并说明理由.【考点】G8:反比例函数与一次函数的交点问题菁优网版权所有【分析】(1)先把=代入反比例函数解析式得到y=k,则A点坐标表示为(2,k),再把
28、(,k)代入y=kx6可计算出,从而得到A点坐标;(2)由(1)得到一次函数与反比例函数的解析式分别为=2x6,y=,根据反比例函数与一次函数的交点问题,解方程组即可得到B点坐标.【解答】解:(1)把=2代入y=,得:y=k,把A(2,)代入y=kx,得:6k,解得k=2,所以一次函数与反比例函数的解析式分别为y=2x6,y=,则A点坐标为(2,2);(2)点在第四象限理由如下:一次函数与反比例函数的解析式分别为y=2x,y=,解方程组,得: 或 ,所以B点坐标为(1,),所以B点在第四象限【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式2(
29、12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的25倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【考点】B7:分式方程的应用.菁优网版权所有【专题】27:行程问题【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1倍,两数相乘即可得出答案;(2)设普通列车平均速度是千米时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可;【解答】解:()根据
30、题意得:40×.=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米时,根据题意得:3,解得:x=120,经检验x20是原方程的解,则高铁的平均速度是12×2.5=300(千米/时),答:高铁的平均速度是00千米/时.【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验23(12分)如图,ABC中,B=C4,cosC=(1)动手操作:利用尺规作以AC为直径的O,并标出O与AB的交点,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,求证
31、:=;求点到BC的距离.【考点】KU:勾股定理的应用;N3:作图复杂作图;S:相似三角形的应用菁优网版权所有【专题】13:作图题;14:证明题【分析】(1)先作出AC的中垂线,再画圆.(2)边接A,E是C的中垂线,AE=CA,得出;(3)利用CA求出,再利用余弦求出M,用勾股定理求出DM【解答】解:(1)如图()如图,连接A,AC为直径,AEC=9°,BAC,DAE=CAE,=;()如图,连接AE,E,作DMBC交C于点M,AC为直径,=90°,AB=AC=,cosC.BE,B=8,点A、D、共圆ADEC=180°,又ADE+BD=1°,BEC,DEBA
32、,即BDBA=BEBCB×=4×BD=,B=cos=cs=,=,BM,M=【点评】本题主要考查了复杂的作图,相似三角形以及勾股定理的应用,解题的关键是运用BDC求出线段的长24(4分)已知平面直角坐标系中两定点(,0)、(4,),抛物线=+b()过点,B,顶点为C,点P(,)(<0)为抛物线上一点.(1)求抛物线的解析式和顶点的坐标;()当AP为钝角时,求m的取值范围;(3)若>,当APB为直角时,将该抛物线向左或向右平移t(0t)个单位,点、P平移后对应的点分别记为C、P,是否存在,使得首位依次连接、P、C所构成的多边形的周长最短?若存在,求t的值并说明抛物线
33、平移的方向;若不存在,请说明理由.【考点】:二次函数综合题菁优网版权所有【专题】53:代数几何综合题;16:压轴题;1:待定系数法.【分析】(1)待定系数法求解析式即可,求得解析式后转换成顶点式即可.(2)因为AB为直径,所以当抛物线上的点P在C的内部时,满足AP为钝角,所以1<m0,或3<4.(3)左右平移时,使DB最短即可,那么作出点C关于x轴对称点的坐标为,得到直线PC的解析式,然后把A点的坐标代入即可【解答】解:(1)抛物线y=ax2x2(a0)过点A,B,,解得:,抛物线的解析式为:y=x2x2;y=x2x2=(x)2,C(,).(2)如图,以AB为直径作圆M,则抛物线在
34、圆内的部分,能使APB为钝角,M(,0),M的半径=.是抛物线与y轴的交点,OP=2,M=,P在M上,P的对称点(3,),当m<或3<<时,APB为钝角.(3)方法一:存在;抛物线向左或向右平移,因为AB、P是定值,所以A、B、P、C所构成的多边形的周长最短,只要AC+BP最小;第一种情况:抛物线向右平移,AC+BP>C+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,2),又(,)'(t,),P'(3,2),AB=5,P(2t,2),要使ACBP最短,只要+AP最短即可,点C关于轴的对称点C(t,),设直线P的解析式为:=kxb,解得直线yx+t+,当P、A、C在一条直线上时,周长最小,+t+=.故将抛物线向左平移个单位连接A、P、所构成的多边形的周长最短.方法二:AB、P是定值,、C所构成的四边形的周长最短,只需+P最小,若抛物线向左平移,设平移t个单位,C(t,),P(t,2),四边形PB为平行四边形,APBP,AC+BP最短,即A+AP最短,C关于x轴的对称点为C(,),C,A,P三点共线时,AC+AP最短,KA=KA,,.若抛物线向右平移,同理可得,将抛物线向左平移个单位时,A、B、P、C所构成的多边形周长最短.【点评
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度出境游旅游目的地考察合同模板2篇
- 二零二五年度对讲机广告宣传与媒体合作合同2篇
- 公务员工作总结奉献社会诚信为本
- 二零二五年度版权质押合同标的及质押权3篇
- 2024版网络安全防护服务合同范本3篇
- 2024版无产权证安置房买卖合同十
- 提高急诊反应速度的措施计划
- 外科护士勇于担当手术护理工作总结
- 二零二五年度文化产业投资借款合同范本3篇
- 二零二五年度建筑施工劳务信息化管理合同规范3篇
- 分子影像学概论课件
- 中国移动呼叫中心的精细化管理
- (全)2023电气工程师内部考试习题含答案(继保)
- 辣椒栽培技术
- 纪检监察知识题库-案例分析(20题)
- 《笨狼的故事》读书会读书分享PPT课件(带内容)
- 就这样当班主任读书分享
- 某kv送电线路铁塔组立监理细则
- 武艳艳数学思政课教学设计《式与方程的整理复习》
- 气柜安装工程施工方案
- GB/T 31989-2015高压电力用户用电安全
评论
0/150
提交评论