追及问题教案_第1页
追及问题教案_第2页
追及问题教案_第3页
追及问题教案_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课题:追及问题课型:开班 备课人:吴雷备课时间:7/7科目:数学 本备课适合学生:基础较好学生 教学目标:1、理解和掌握简单的追及问题; 2、提高学生对行程问题的认识; 3、提高学生对数学的学习兴趣。 教学内容:追及问题 重点难点:掌握追及问题的基本公式并利用公式求简单的追及问题教学策略与方法:图解法、演示法、讲解法教学过程设计:一、导入。今天我们来学习行程问题当中的追及问题,它属于同向运动中的一种,下面我们就通过一个例子来给大家讲叙怎样解决追及问题。例子: 兔子在狗前面150米,一步跳2米,狗更快,一步跳3米,狗追上兔子需要跳多少步? 我们知道,狗跳一步要比兔子跳一步远32=1(米),也就是

2、狗跳一步可以追上兔子1米,现在狗与兔子相距150米,因此,只要算出150米中有几个1米,那么就知道狗跳了多少步追上兔子的。不难看出150÷1=15(步),这是狗跳的步数。这里狗在前面跳,狗在后面追,它们一开始相差150米,这150米叫做“追及距离”;兔子每步跳2米,狗每步跳3米,它们每步相差1米,这个叫“速度差”;狗追上兔子所需的步数叫做“追及步数”有时是以秒、分钟、小时计算,则叫“追及时间”,像这种包含追及距离、速度差和追及时间(追及步数)三个量的应用题,叫做追及问题。二、新课讲授1、速度差:快车比慢车单位时间内多行的路程即快车每小时比慢车多行的或每分钟多行的路程。 追及时间:快车

3、追上慢车所用的时间。 路程差:快车开始和慢车相差的路程。2熟悉追及问题的三个基本公式:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差3解题技巧:在理解行驶时间、地点、方向等关系的基础上画出线段图,分析题意思,寻找路程差及另外两个量之间的关系,最终找到解答方法。三、例题分析【例1】甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?【思路分析】这道问题是典型的追及问题,求追及时间,根据追及问题的公式:追及时间=路程差÷速度差 150÷(75-60)=10(分

4、钟)答:10分钟后乙追上甲。【小结】提醒学生熟练掌握追及问题的三个公式。【例2】 骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米? 【思路分析】这道题目,是同时出发的同向而行的追及问题,要求其中某个速度,就必须先求出速度差,根据公式:速度差=路程差÷追及时间:速度差:450÷3=150(千米) 自行车的速度: 150-60=90(千米)答:骑自行车的人每分钟行90千米。【小结】这道题目在于灵活运用追及问题的三个基本公式求其中任意三个量。【例3】两辆汽车从A地到B地,

5、第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?【思路分析】根据题意可知,第一辆汽车先行2小时后,第二辆汽车才出发, 画线段图分析:(图略)从图中可以看出第一辆行2小时的路程为两车的路程差,即54×2=108(千米),两车相差108米,第二辆车去追第一辆车,第二辆车去追第一辆车,第二辆车每小时比第一辆车每多行63-54=9(千米),即为速度差,用追及时间=路程差÷速度差。解:(1)两车路程差为:54×2=108(千米) (2)第二辆车追上所用时间:108 ÷(63-54)=12(小时)答:第

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论