场调查与预测习题答案_第1页
场调查与预测习题答案_第2页
场调查与预测习题答案_第3页
场调查与预测习题答案_第4页
场调查与预测习题答案_第5页
免费预览已结束,剩余27页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、、移动平均类市场调研预测及决策练习题答案1.已知某厂山地自行车各年销量 Y(万辆),算出一次指数平滑值如表。请计算二次指数平滑值,并用公式Yt T at btT预测2004、2005年的销量。(二2.某商场某品牌家电产品1998-2007年销售额资料如下表所示,当平滑系数1二,2二时,试用一次指数平滑法预测该商场该商品2008年销售额为多少万元?年份t销售额199811019992202000330200145020025602003680200471002005812020069160200710180年份t2000110200121520023182003423答案:周次123456789

2、10销售额222123242524262524263、某商店近10周的食盐销售量如下表:试分别用3周和5周为移动期使用移动平均法预测第11周的食盐销售量。单位:千克4、下表为某公司2006年出口商品月销售额, 单位:万元时间123456789101112销量6070558090657075608090100根据以上资料采用二次移动平均法,要求:(1)列出二次移动平均法计算表。(N=3,移动平均值取1位小数)3)预测该企业2007年1月、2月、3月销售额。5、某电视机厂销量平稳,连续多年运用一次指数平滑法对该厂电视机销量进行了预测,对2005年的销量预测值为130万台,而当年实际销售量为150万

3、台,请据此预测2006年该厂电视机的销售量(平滑常数a为)。6、企业近年产品销售额如下表,请用一次移动平均法确定2002年销售额预测值。(要求n=3和n=5,并计算它们的平均绝对误差,以确定最后的预测值)某企业近年产品销售额单位:万元年份19941995199619971998199920002001销售额2102242202322362342402387 .某洗衣机厂近年洗衣机销售量如下表,当n=4时,用二次移动平均法预测2003年销售量表4-1某企业近年产品销售额单位:万台年份19951996199719981999200020012002销售量18 .某商场近年服装销售额如下表,用一次指

4、数平滑法预测2003年服装销售额(分别计算a二,a二的一次指数平滑值,初始值取248,用平均绝对误差小的一次指数平均值作为最后预测值。)表4-3近年服装销售额单位:万元年份19951996199719981999200020012002销售额2452502492602632552652689、某公司2000年上半年各月销售收入分别为:400万元,450万元,390万元,410万元, 480万元,试用一次指数平滑法预测:(1)取a二时,预测2000年7月份的销售额:(2)取a二时,预测2000年7月份的销售额10运用二次平滑指数预测法预测 2003年电冰箱的销售额。(二次平滑指数=?)年份t销售

5、额xt199114919922511993347199445019955481996649199775119988461999950200010522001115120021254、季节调整指数类1. 某服装店近三年汗衫销售额如下表,预计2003年汗衫销售额比2002年增长4%用直接平均季节指数法预测 2003年各季度汗衫销售量。表4-6单位:万件2. 某商店20022004年各季度销售量如表 5所示,若2005年计划销售量3000箱,试用季节平均预测法预测 2005年各季度的销售量为多少箱?表4-7单位:箱季度一二三四2002190617157058020033631070175096200

6、43813001580743某地供销社鲜蛋收购量如下,试预测1995年各月的鲜蛋收购量月份年份1991 1992 1993 19941234567891011124已知某公司计算机各季销售额 Y(百万元)如表。(1)用“直接平均法”求季节指数,并将季节指数填入下表;(2)预测2006年各季销售额;季节指数修正上述预测值。(3)用年季YTYT03一12-11-132121二6-9-5481三5-7-3549四6-5-302504一14-3-429二10-1-101三6161四103309答案:年份年销售季季季四季2003291265620044014106102005511614714合计120

7、42301830季节指数(1)(2)(3)05一1658025二1479849三796381四1411154121121200128572、市场占有率预测类1.已知A、B、C三种牌号的微波炉去年在某地的市 场占有率S(0)=, o还知道市场占有率的年状态转移概 率矩阵。求本年、下年的市场占有率 SS。2.已知A、B、C三种牌号的移动电话去年在某地的市场占有率s(0)=,,还知道市场占有率的年状态转移概率矩阵为广 (1)、求今年和明年的市场占有率;P= 0.2求许多年后平衡状态下的市场占有率S (P,q,r) o答案:(1)(2) 许多年后平衡状态下的市场占有率:XB=X,假设市场上只有 A B

8、 C三种牌号的移动电话,故可以得到以下联立方程组:+=X1r +=X2+=X3X1+X2+X3=1得:X仁 15/46 ; X2=7/23 ; X3=17/46 。则许多年后平衡状态下的市场占有率为: S=(15/46, 7/23, 17/46)。3. 某厂销售某种产品,5年来只有两种表现:畅销和滞销。每个季度的表现如表7-1所示,试求市场的一步转移矩阵。表7-1产品销售状态季度12345678910、,出、,出、,出、,出、,出状态-滞滞滞季度11121314151617181920状态畅畅畅滞畅滞滞畅畅畅由上图可知,市场的一步转移矩阵为:r、B=£4. 某地区市场上主要销售 A、

9、B、C三种品牌的牙膏,每月三种品牌牙膏的销售总量通常保持在20000支左右。其中5月份A、B C三品牌牙膏的销售量分别为 8500支、6500支、5000 支。5月份在该地区几个大型商场,对购买这三种品牌牙膏的 500名顾客进行随机调查,调查结果为:在购买 A品牌牙膏的200名顾客中,打算6月份仍购买A品牌的有140人,转 购B品牌的有40人,转购C品牌的有20人;在购买B品牌牙膏的150名顾客中,打算6 月份仍购买B品牌的有100人,转购A品牌的有30人,转购C品牌的有20人;在购买C 品牌牙膏的150名顾客中,打算6月份仍购买C品牌的有120人,转购A品牌的有15人, 转购B品牌的有15人

10、。若以后各月顾客在这三个品牌之间的保留率、转出率和转入率保持不变,今后一段时间这三种品牌牙膏都不会退出市场,也没有新品牌在此市场销售,试预 测:6月份这三种品牌牙膏的市场占有率和销售量答案:ABC69品牌销售量五月市场占有率69A 1850042570B65006 32571C50000. 25则五月份的市场占有率为:A1=(,)AC273变动青况概率274AA1400. 7A-*B400.2276傀CI200. 12771000. 6666&6667278B-»-A300. 2C200. 133333333280C C1200.8281Cf A15a 1282C->E

11、150. 17 n从右图中可以得到六月份市场的转移概率矩阵为:B=三种品牌牙膏的市场占有率和销示,为:A2二(,);销售量:A=7750支,B=6533支,ABC葩品牌六月市场占有率销售量Ad 38757750讥38B0. 3266666676533- 33C2358333335M6 67则六月份这售量如图所C=5717 支。5. 现有A、B两种品牌的味精,已知其市场占有率变化按下列矩阵P发生:0 4 06P 0.3 0.7试预测两种品牌味精的最终市场占有率答案:设X=(x1,x2)是两种品牌味精的最终市场占有率,则X不随时间的推移而变化,这时, 一步转移矩阵P对X不起作用,即有:XB=X(x

12、1,x2) 0.3 0.6 二(x1,x2)0. 3 0.7即(+,+) = (x1,x2),于是有:+=x1+=x2又因为假定市场上只有这两种品牌味精,故x1+x2=1上述式子组成一个联立方程组,解方程组:+=x1 厂< +=x2匕x1+x2=1得:fx1=1/3斗x2=2/3则两种品牌味精的最终市场占有率为:X=( 1/3,2/3)四、线性回归类1. 某超市1月至7月食品销售额如下,用直线趋势延伸法预测 8、9月食品销售额,并计算标准误差So(1) 直观法(2) 拟合直线方程法2. 某自行车厂近年销售量如下表,用二次曲线趋势延伸法预测2002年自行车销售量,并计算平均绝对误差。销售量

13、单位:万辆年份19941995199619971998199920002001销售量76707280859298106答案:3、某公司其产品连续多年的销售量时间序列如下表所示,预测未来两年的销售量将继续增长。试用直线趋势法预测该公司第 8年、第9年销量。(9分)年号1234567销量(百台)680710750790840880890(1)直观法(2)拟合直线方程法4某企业某产品20012007广告支出以及该产品销售收入资料如下表所示,如果2008年广告支出达到40万元,试预测同时期内该产品的销售额应为多少万元?年份广告支出销售额200151002002101202003121502004151

14、80200518200200620250200725300答案:一元线性回归分析预测5 .某地区农民10年人均年纯收入和该地区相应年份的销售额的资料如下:年序号人均年纯收入销售额(百万兀)(元)14001302520150356015646401645720172682018279401908104020291160216101200226要求:(1)用最小二乘法求出该一元回归方程中的参数,建立预测模型;(2)假设模型的各项检验均通过,用该模型预测当年纯收入为 1400元的销售额(点预测)6. 19922003年某省国内生产总值与固定资产投资完成额数据资料如下:年份国内生产总值y (亿元)固定

15、资 产投资 完成额 x (亿 元)年份国内生 产总值 y (亿 元)固定资产投资完成额x (亿元)19921952019983608119932102019994321311994244262000481149199526435200156716319962945220026552321997314562003704202要求:(1) 建立一元回归模型,并说明回归系数的意义。(2) 对模型进行检验(a=) o(3) 若2004的固定资产投资完成额可达到 249亿元,问届时国内生产总值是将达到什么水平(概率95%)(已知:概率95 %,查t分布表得t a /2(10)=)九干5仗_耶#区间预测

16、式中t a /2(n -2)为t统计量双侧临界值,Sy为因变量的估计标准误差,且答案:(1 )(2)(3)7 已知观察期数据资料如表 6-1所示,表6-1x2356791012y6080110140160190220250求:(1)建立一元线性回归方程模型;(2)计算相关系数r(3) 计算标准误差Sy。答案:(1)(2) (3)8.某家用电器社会购买力(十万元)与该市家庭人均货币收入(元)的资料如表2所示表6-2收入(元)年198519861987198819891990199119921993购买力85111136158176205278335392人均货币收入116141171196221

17、256336405478求:(1)建立一元线性回归方程模型;(2)对回归模型进行显着性检验(a=);(3)如果市民人均收入按10%增长,试预测该市1994、1995、1996年的购买力各是多少?(4) 对1994年该市市民购买力做区间估计(a=)。答案:(1)(2)(3)(4)五、抽样类1. 某居委会共有家庭户500户,现欲了解家庭户平均每半年订阅报刊的情况。采用简单随机抽样抽出10户,他们每半年平均订阅报刊的支出分别为33, 32, 52, 43, 40, 41 , 45, 42, 39和48元。试计算该居委会家庭户平均每半年订阅报刊费用的标准差、变异系数,以及95%的置信水平下的误差限与相

18、应的置信区间3 .某公司拥有员工1000人,为了解员工对某项技术改造措施的态度,拟采用简单随机抽样对员工进行电话调查。此次调查的误差限为0、1,调查估计值的置信水平为 95%预计回答率为80%试计算应调查的员工人数。2某学校有1000名在校生,调查学生的安全意识,按性别将总体划分成男生和女生两层,第1层由400名男生组成,第2层由600名女生组成,从中抽取一个容量为250人的样本, 将样本等比例地分配给各层,试计算各层的样本数。由题意可知:学校有1000名在校生,第1层由400名男生组成,第2 层由600名女生组成,得到:男生占总体的比为2:5,女生占总体的比为3:5。现从中抽取一个容量为25

19、0人的样本,将样本等比例地分配给各层,则第一层男生的样本数为100,第二层女生的样本数为150。4. 某高校在校本科生40000人,分优、良、中、差4个层次,其他资料如表1所示。当n=400 人时,试按分层比例抽样法、分层最佳比例抽样法、最低成本抽样法分别确定各层抽样数。表1分层随机抽样数据资料层次NiSi (分)yC元优600034良1400065中1600085差400015640000答案:(1 ) 分层比例抽样法由题意可知,各个层次与总体的比如下:优与总体的比为:3:20 ;良与总体的比为:7:20 ;中与总体的比为:2:5 ;良与总体的比为:1:10 ;所以,优、良、中、差四层样本数

20、分别为60、140、160、40(2) 分层最佳比例抽样法按分层标准差大小确定各层样本单位数的计算公式如下:ni=n* (Ni*Si ) /(刀 Ni*Si)n样本单位总数Ni 各类型的调查单位总数Si各层的标准差则各层的样本数计算如下:刀 Ni*Si=6000*3+14000*6+16000*8+4000*15=290000优:n仁400*(6000*3)/290000=25良:n2=400*(14000*6)/290000=116中:n3=400*(16000*8)/290000=176差:n4=400*(4000*15)/290000=83(3) 最低成本抽样法最低成本抽样法各层抽取样本

21、数的计算公式为:ni二n* (Ni*Si/ g ) /(刀(Ni*Si/c )n样本单位总数Ni 各类型的调查单位总数Si各层的标准差Ci 各层每单位的调查费用则各层的样本数计算如下:E( Ni*Si/ X C)=6000*3/4+14000*6/5+16000*8/5+4000*15/6=56900优:n仁400*(6000*3/4)/56900=32良:n2=400*(14000*6/5)/56900=118中:n3=400*(16000*8/5)/56900=180差:n4=400*(4000*15/6)/56900=705. 对某厂生产的灯泡10000个进行耐用性能检查,根据以往抽样测

22、定,求得耐用时数的标准差为600小时。天数概率(1)在重复抽样条件下,概率保证度为%灯泡平时耐用时数的误差范围不超过 150小时,要抽取多少灯泡做检查?10售货量20概率30进30nr2!1020302030期望利润(P=%寸,t=1)(2)根据以往抽样检验知道,灯泡合格率为95%合格率的标准差为%要求在勺概率保证下,允许误差不超过4%试确定重复抽样所需抽取的灯泡数量是多少? (P二寸,t=3 )答案:六、决策类1 某商店购进香蕉零售。零售获利30元/箱。若当天销不出去,则亏损10元/箱。去年销售的情况如下表.请用最大期望收益标准(决策表法),判定每日购进多少箱最好。2. 某公司有一片房地产,

23、有“不幵发”、“部分幵发”及“全部幵发”三个方案。未来的经 济环境状况有“较好”、“一般”、“较差”三种。各种经济状态出现的概率,各种方案在各 种状态下的损益值(十万元)如下表。请(1) 画出此问题的决策树;(2) 用此决策树选择最佳方案。未来经济状况较好一般.、八 较差A.不25012050开发B.开发部分20050-20C.全部300100-100开发答案:较好250全部开发80较差较好不开发300100咅B分开发 I-20120较差较好5020050较差-100最终决策树如上图所示3. 某公司需要对某新产品生产批量做出决策,各种批量在不同的自然状态下的收益情况如F表(收益矩阵),用至少两

24、种不确定情况下的决策方法,对上述生产经营冋题做出决策方案。答案:(一)悲观决策(小中取大准则)(1)确定S1、S2、S3三个方案在各自然状态下的最小收益值, 其中:f( S1)二min( 30, -6)=-6f( S2)=min (20,-2)=-2f(S3)=min (10,5)=5(2)找出最小收益值中的最大者,并确定最优方案f (S)二max (-6, -2 , 5) =5即5所对应的S3方案能在最不利的情况下带来最大的收益值, 为最佳方案。(二)乐观决策法(大中取大准则)(1)列出各方案在不同自然状态下的最大收益值,其中:f (S1)二max(30,-6)=30f (S2)二max(

25、20,-2)=20f (S3)二max( 10,5)=10(2)找出最小收益值中的最大者,并确定最优方案f (S)二max(30, 20, 10 ) =30即30所对应的S1方案能在最好的情况下带来最大的收益值,为最佳方案。4 .某厂有一种新产品,其推销策略有S1、S2、S3三种可供选择,但各方案所需的资金、时间都不同,加上市场情况的差别,因而获利和亏损情况不同。而市场情况也有三种:Q1(需要量大),Q2 (需要量一般),Q3 (需要量低),市场情况的概率并不知道,其益损矩阵如9-4表,请分别用乐观准则、悲观准则、等可能性准则、后悔值准则进行决策。市场情况Q1Q2Q3S15010-5S2302

26、50S3101010答案:(一) 悲观决策(小中取大准则)(1) 确定S1、S2、S3三个方案在各自然状态下的最小收益值, 其中:f (S1)=min (50,10, -5 ) =-5f (S2) =min (30,25,0 ) =0f (S3) =min (10, 10, 10 ) =10(2) 找出最小收益值中的最大者,并确定最优方案f (S)二max (-5,0, 10 ) =10即10所对应的S3方案能在最不利的情况下带来最大的收益值,为最佳方案。(二) 乐观决策法(大中取大准则)(1)列出各方案在不同自然状态下的最大收益值,其中:f (S1)二max(50, 10, -5 ) =50

27、f (S2)二max(30,25,0 ) =30f (S3)二max( 10, 10, 10 ) =10(2 )找出最小收益值中的最大者,并确定最优方案f (S)二max( 50, 30, 10 ) =50即50所对应的S1方案能在最好的情况下带来最大的收益值,为最佳方案(三)等可能性准则(四)遗憾值法(最小后悔值准则)(1)计算各自然状态下各方案的最大收益值为:(2)第i个方案ai在各自然状态下的遗憾值如表所示:(3)各方案在不同状态下的最大遗憾值如上表所示:(4)最小的那个最大遗憾值R( a*) =min (15, 20, 40 ) =15即15所对应的S1方案为最佳方案。5某企业选择将产

28、品销往甲、 乙、丙三个地区,获利情况和当地的市场状况有关。经过市场 预测,估计市场要求好、中、差的概率为、 、,其收益情况如下表,请用最大期望收益决策 准则和决策树法分别进行决策。选址方案市场需求状态好(概率)中(概率)差(概率)甲地461乙地54丙地62(1 )最大期望收益决策准则丙地62七、定性预测类1. 德尔菲法预测某型号微波炉投放某一市场后的年销售量,假设选择了15位专家,他们分别进行了三次分析,第三次分析预测结果如下表,试用中位数法求预测值。权重12345678最高经销量9009007008606001000800700最可经销量600770600600500800600600最低经

29、销量4805004004502206004404009101112131415合计最高经销量70072090080080084090012120最可经销量5006007206007007008009690最低经销量3303505004005005506606780中位数法:将预测值按大小顺序不重复依次进行排列,排列在中间的那个数代表平均值,以它作为预测结果。(1) 最高经销量从大到小依次排序为:1000、900、860、840、800、720、700、600中位数二(840+800)/2=820(2) 最可经销量从大到小依次排序为:800、770、720、700、600、500中位数=(720+700)/2=710(3) 最低经销量从大到小依次排序为:660、600、550、500、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论