版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1函数对称性与周期性杨少辉杨少辉2知识点一:对称性的代数表达式;知识点一:对称性的代数表达式;1、函数 的图像关于直线 对称当 时, ;( )f xxa122xxa12()()f xf x如: 、 等;()()f axf ax(2)( )faxf x(3)()faxf xa32、函数 的图像关于点 对称当 时, ;( )f x( , )a b122xxa12()()2f xf xb如: 等;()()2f axf axb(2)( )2faxf xb注意:若注意:若 有意义,则有意义,则 ;( )f a( )f ab4总结:若函数方程中含有 且 的系数相反,则函数 具有对称性;若 则有对称轴;若
2、则有对称中心;()(2)ff式1,式12x式 与式 中( )f x()(2)ff式1式()(2)ff式1式常数5知识点二:简单的复合函数的奇偶性;知识点二:简单的复合函数的奇偶性;基本思想:转化成基本思想:转化成 的对称性来研究;的对称性来研究;( )f x(2) 为偶函数()f xa()()f a xf a x(1) 为奇函数 ()f xa()()f a xf a x6知识点三:函数对称性的一个应用;知识点三:函数对称性的一个应用;(1)若 的图像关于 对称,且在区间 上为增(减)函数;若 则: ( ) ;( )f xxa ,)a 12( )()f xf x12| |xaxa12| |xax
3、a7例1、已知 满足: ,且在 上为增函数;若不等式对 恒成立,求a的取值范围?( )f x(2)( )fxf x1,)2(1)(2)f axf x xR 8例2、函数 为定义在R上的减函数,的图像关于点 对称,若实数 满足: ;点 为原点,当 时, 的取值范围是_;( )f x(1)f x(1,0), x y22(2 )(2)0f xxfyy(1,2),( , )MN x yO14xOM ON 9例3、已知等差数列 同时满足:(1)(2)则 的前2011项和 = _;na3222011(1)2011(1)sin3aa3201020102011(1)2011(1)cos6aana2011S10
4、知识点四:函数的周期性;知识点四:函数的周期性;1、定义:对于定义域内的任意的 都存在非零常数 使得 ,则称 为函数 的一个周期,函数 为周期函数;(注意:如无特殊说明所说周期为最小正周期;)xT()( )f xTf x( )f x( )f xT112、常见的周期表达式:()();()f xaf xbab(1)|Tab(2)()( )f xabf x2|Ta(3)()( )kf xaf x 2|Ta(4)2()( )f xabfx2|Ta12(5)(2 )()( )f xaf xaf x6|Ta(6)1( )()1( )f xf xaf x2|Ta(7)1( )()1( )f xf xaf x
5、4|Ta总结:若已知 的一个函数方程,且“式1”与“式2”中 的系数相同,一般可以推出周期;(1)(2)ff式 与式x133、对称性与周期性的关系;(1)若 关于对称轴 对称( )f xxaxb和2|Tab(2)若 关于 对称( )f x( ,0)xab 和4|Tab(3)若 关于 对称( )f x( ,0)( ,0)ab和2|Tab14例题讲解:函数的综合应用;例题讲解:函数的综合应用;例1、若 是定义在R上的奇函数,且满足 ,则下列命题正确的有_;(1) ;(2) 周期为4;(3) 对称中心为 ;(4) 对称轴为 ; ( )f x(2)( )f xf x (2)0f( )f x( )f x
6、1x ( )f x(2,0)15(变式1)已知 是R上的偶函数, 是奇函数,且 ,则: _;( )f x(1)f x(2)2f(1)(2)(2014)fff16( )f x(变式2)已知定义在R上的函数 满足: 为奇函数, 为偶函数,则: = _; = _;(1)f x(3)f x(0)1f(8)f(2007)f17例2、已知 是定义在R上的奇函数,且满足(1) ; (2) 在区间 上为增函数; (3) 时, 有四个 不等实根 ;则: = _;( )f x(2)(2)f xf x ( )f x0,2 8,8x ( ),(0)f xm m1234,x x x x1234xxxx18(变式)已知定义在R上的函数 满足: 且 ,则 在 上的所有实跟之和为_;( )f x222,0,1)( )2, 1,0)xxf xxx (2)( )f xf x25( )2xg xx( )( )f xg x 8,319例3、已知 是定义在R上的偶函数,且 ,当 时, ;若关于 的方程 在区间恰有3个不等的实根,则a的取值范围是_;( )f x(2)(2)fxfx 2,0 x 2( )12xf xx( )log (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《立定跳远》的教学反思
- 《快乐英语》第三册教案
- 体育场馆电缆网络顶管施工协议
- 城市绿化钻孔桩施工合同
- 环保产业园项目招投标资料
- 建筑工人休息室空调节能办法
- 公共交通枢纽防火门招投标资料
- 物业公司医疗保健人员合同模板
- 招投标合同变更法律风险
- 研发项目招投标实施细则
- Module1 Unit3 Period 3 A thirsty bird (教学设计)-2024-2025学年沪教牛津版(深圳用)英语四年级上册
- 《心系国防 强国有我》 课件-2024-2025学年高一上学期开学第一课国防教育主题班会
- Unit1 单元整体教学设计 2024-2025学年人教版(2024)七年级英语上册
- 2024年秋季新华师大版七年级上册数学教学课件 4.1.1对顶角
- 《创伤失血性休克中国急诊专家共识(2023)》解读课件
- 论网络交易违法行为监管地域管辖权的确定
- 酒店连锁突发事件处理考核试卷
- 2024发电企业安全风险分级管控和隐患排查治理管理办法
- 2024-2030年中国甲硫基乙醛肟行业市场行情监测及发展前景研判报告
- 运用PBL教学法探讨如何教会患者正确使用吸入剂
- 第四章运动和力的关系单元教学设计
评论
0/150
提交评论