版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、轴对称中测试题分析一、根底知识梳理一主要概念1 .轴对称图形:如果一个图形沿一条直线折叠后,?直线两旁的局部能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.角是轴对称图形,角平分线所在的直线是它的对称轴.2 .线段的垂直平分线:线段是轴对称图形,?它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线简称中垂线.3 .等腰三角形:有两条边相等的三角形叫做等腰三角形.二主要性质1 .角的平分线上的点到这个角的两边的距离相等.2 .线段垂直平分线上的点到这条线段两个端点的距离相等.3 .等腰三角形是轴对称图形等腰三角形顶角的平分线、底边上的中线、底边上的高重合也称
2、“三线合一, 它们所在的直线都是等腰三角形的对称轴.等腰三角形的两个底角相等.4 .两个图形关于某条直线成轴对称,?那么对应点所连的线段被对称轴垂直平分.对应线段相等,对就角相等.二、考点与命题趋向分析一水平1 .通过具体实例熟悉轴对称,探索它的根本性质,?理解对应点所连的线段被对称轴垂直平分的性质.2 .能够按要求作出简单平面图形经过一次或两次轴对称后的图形;?探索简单图形之间的轴对称关系,并能指出对称轴.3 .探索根本图形等腰三角形、矩形、菱形、等腰梯形、正多边形、?圆的轴对称性及其相关性质.4 .欣赏现实生活中的轴对称图形,?结合现实生活中典型实例了解并欣赏物体的镜面对称,能利用轴对称进
3、行图案设计.5 . 了解角平分线及其性质.6 . 了解线段垂直平分线及其性质.7 . 了解等腰三角形的有关概念,探索并掌握等腰三角形的性质.二命题趋向分析1 .中考中常在拼图中考查轴对称的有关概念,考查学生动手操作水平.【例1】2001年福建省福州市两个全等的三角板,?可以拼出各种不同的图形,图中已画出其中一个三角形,请你分别补出另一个与其全等的三角形,使每个图形分别成 不同的轴对称图形所画三角形可与原三角形有重叠局部.【思路分析】只要对轴对称图形的概念清楚,弄清题意,此题还是很容易完成的,现 举几例如下.【解】第二种2 .有些找规律题也利用轴对称图形出题.【例2】2004年烟台市把26个英文
4、字母按规律分成 5组,现在还有5?个字母D>M.X、Z,请你按原规律补上,其顺序依次为 F R P J L G 口; H I O 口 N S 口; B C K E 口 V A T Y W U 口A . Q X Z W D B . D M Q Z X C . Z X M D Q D . Q X Z D M【思路分析】第组不是中央对称图形,也不是轴对称图形,应填 Q第组既是中央对称图形,也是轴对称图形,应填X;第组是中央对称图形,不是轴对称图形,应填Z;第组不是中央对称图形,仅是轴对称图形,并且对称轴为一条水平线,应填D;第组也不是中央对称图形,仅是轴对称图形,并且对称轴为一条竖线,应填M.
5、【解】选D三、解题方法与技巧方法1 :转化方法【例1】如下图,等腰三角形ABC AB边的垂直平分线交 AC于D, AB=?AC=8BC=6,求 BDC周长.【解】DE是AB的垂直平分线点B、A关于BD轴对称AD=BD . BCD勺周长=BC+CD+BC=AD+CD+BC=AC+BC AC=8 BC=6 . BCDW 长=8+6=14.【规律总结】此题的思路主要是将线段转化代换,把三角形周长转代为线段的和,这种转化的思想是解决数学问题的重要思想方法.例2如下图,在公路a同侧有两个居民小区 A、B, ?现需要在公路旁建一个液化气站,要求到A、B的距离之和最短,这个液化气站应建在哪一个地方?【解】直
6、线a和a的同侧两点A、B,如同所示. 求作:点 C,使C在直线a上,并且使 AC+BCt小.作法:1.作A点关于直线a的对称点A'.2 .连结A' B交直线a于点C,那么C就是所求作的点.【规律总结】此题通过作点A关于直线a的对称点A',把AC+BM和最短问题转化为 A'、B两点之间线段最短的问题.方法2:分类讨论法【例3】如下图,在四个正方形拼接的图形中,以这十个点中任意三点为顶点,共能组成 个等腰直角三角形, 你愿意把得到上述结论的探究方法与他人交流吗?请在下面简 要写出你的探究过程.【解】24个.以Ai、色、A、A10、4为直角顶点的等腰直角三角形分别有1
7、个、1?个、4个、5个、1个.共12个.再根据轴对称性质可知:在整个 图形内共可组成12?X 2=24个等腰直角三角形.17、如下图,在正方形中均匀地分布着一些数字,小明利用轴对称的思想,用了一种非常巧妙的方法,迅速地将这组数字和求了出来,你也能试试吗?1234523456345674567856789方法3:数形结合法【例4】如下图,在正方形中均匀地分布着一些数字,小明利用轴对称的思想,用了一种非常巧妙的方法,迅速地将这组数字和求了出来,你也能试试吗?【解】从数字组中可以看出,一条对角线上的数都是5, ?假设把这条对角线当作对称轴,把正方形中的数之和为5X5+10X 10=125.方法4:构
8、建数学模型A'、B'、C'.由于 C?'不在/【例5】一面镜子 MN竖直悬挂在墙壁上,人眼 O 的位置.如下图,?有三个物体 A、B、C放在镜子前 面,人眼能从镜子看见哪个物体?【思路分析】物体在镜子里面所成的像就是数学 问题中的物体关于镜面的对称点,人眼从镜子里所能 看见的物体,它关于镜面的对称点,必须在眼的视线 范围的.【解】分别作 A、B C三点关于直线 MN的对称点MON部,故人能从镜子里看见 A、B两物体.【规律总结】这道题是轴对称在实际中的应用,关键是建立相应轴对称图形的数学模型,再利用轴对称知识来解决.方法5:拼图【例6】如下图,一批废料都是等腰三
9、角形的小钢板, 其中AB=AC ?现要把这种废钢板切割后再焊接成两种不同 规格的矩形,每种矩形的面积正好等于该三角形的面积,每块切割的次数最多两次,切割的损失忽略不计.(1)请你设计两种不同的切割焊接方案,并且用简要的文字加以说明.(2)假设要把该三角形废料切割后焊接成正方形零件(只切割一次),?那么该三角形应满足什么条件?【解】(1)方案、方案如下图:A方案方案仍方案中虚线为切割线,M N为AB AC中点,MPL BC(2)假设要把该三角形只切割一次后焊接成正方形零件,?那么该三角形应为等腰直角三角形.【规律总结】此题创新之处在于利用等腰三角形的对称性质进行切割后拼接成矩形, 这种利用轴对称
10、的性质解决实际生活中一些最优化方案的设计问题是中考的热点问题.【例7】两个“十字形纸板如下图,每一个都由五个正方形组成,?试将其中一个切成大小和形状相同的四块,与另一个“十字形纸板拼合在一起,得到一个正方形.【解】切拼方法如下:每块都完全一样.18、两个“十字形纸板如下图,每一个都由五个正方形组成,?试将其中一个切成大小和形状相同的四块,与另一个“十字形纸板拼合在一起,得到一个正方形.四、中测试题归类解析一判断图形是否是轴对称图形【例1】2003,北京市海淀区羊年话“羊字象征着美好和桔祥,?以下图案都与“羊字有关,其中是轴对称图形的个数是A. 1; B . 2; B . 3; D , 4【思路
11、分析】沿着一条直线折叠后,直线两旁的局部能够互相重合的图形是第一个图和第三个图【解】答案应是:B【规律总结】判断一个图形是否是轴对称图形关键是根据定义来确定.【例2】 2004,泸州以下各种图形不是轴对称图形的是【思路分析】沿着一条直线折叠,直线两旁的局部不能够互相重合的图形只有C图.【解】应选:C.【规律总结】要注意轴对称图形有时对称轴不只是一条.二利用轴对称性质解题【例1】2004,河南如图,直线 L是四边形ABCD勺对称轴,假设 AB=CD有下面的 结论:AB/ CDAC! BDAO=OC® AB± BC,其中正确的结论有 .【思路分析】 由于L是四边形ABCM对称轴
12、可得到 AB=AD BC=DC又由于AB=?C所 以AB=AD=DC=CB推出四边形 ABC的菱形,根据菱形性质可得出:AB/ CD AC! BD AO=OC 故应填:【规律总结】解此类题的关键是要记住轴对称图形的性质.【例2】2003,南宁市尺规:把右图实线局部补成以虚线 L为对称轴的轴对 称图形,你会得到一只美丽蝴蝶的图案不用写作法、保存作图痕迹.m【规律总结】关于作轴对称图形一般是先作出对称点然后连接对称点得到对称图形.五、中测试题集萃一、填空题1. 2003,吉林下面四个图形中,从几何图形的性质考虑, 请指出这个图形,并简述你的理由.?哪一个与其他三个不同?答:图形;理由是.2. 20
13、03,安徽如图1, L是四边形 ABC面对称轴,如果 AD/ BG有以下Z论: AB/ CDAB=BCAB,BCAO=OC其中正确的结论是 . ?把你认为正确的结论的序号都填上3. 2004,南平:如图2,在 ABC中,BC=& AD是BC边上的高,?D然垂足,?将 ABC折叠使点A与点D重合,那么折痕EF的长为.4. 2004,潍坊如图3,请写出等腰梯形 ABCDAB/ CD . ?特有而一般梯形不具有的三个特征:5. 2003,?长沙?如图4, ?请根据小文在镜中的像写出他的运动衣上的实际号: 二、选择题1. 2003,河北省以下图案中,有且只有三条对称轴的是2. 2003,四川我
14、国主要银行的商标设计根本上都融入了中国古代钱币的图案,以下 我国四大银行的商标图案中是轴对称图形而不是中央对称图形的是© c D ABCD3. 2004,北京以下图形中,既是轴对称图形又是中央对称图形的是A .等腰三角形 B .等腰梯形 C .正方形 D .平行四边形4. 2004,天津在以下图形中,既是轴对称图形,又是中央对称图形的是遗用* 塔ABCD三、解做题1. 2003,福州用假设干根火柴棒可以摆出一些优美的图案,以下图是用火柴棒摆出的一 个图案,此图案表示的含义可以是:天平或公正.请你用5根或5根以上火柴棒摆成一个轴对称图案,并说明你画出的图案的含义.图案:含义:2. 20
15、04,福州图中是一个在 19X16的点阵图上画出的“中国结,?点阵的每行及每列之间的距离都是 1,请你画出“中国结的对称轴,?并直接写出图中阴影局部的面积.3. 2004,陕西:如图,在 ABC 中,AB=BC=Z ABC=120 , BC/ x 轴,点 B?的坐 标是-3 , 1.1画出 ABC关于y轴对称的 A' B' C'2求以点 A B、B'、A'为顶点的四边形的面积.答案:一、填空题:1 . ( 1)(2)四个图形中,只有图不是轴对称图形.2 .、 3 . 4 4 .如/ A=Z B; / C=/ D; AD=BC 是轴对称图形 5 . 108 二、选择题:1.D 2.C 3 . C 4 . C三、解做题:1.答案不惟一,略.2 .画出S=2答:3 .解:“中国结的对称轴.X 16X 2=64阴影局部的面积是 64.D R C(1)画图正确(2)过A点作AD± BC,交BC的延长线于点 D,那么 /ABD=180 - ZABC=180 -120 ° =60°在ABD中BD=AB - cos / ABD=2K 1 =12AD=AB - sin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Schaftoside-Standard-生命科学试剂-MCE
- 2024年电池组配件项目规划申请报告
- 2024年柔性自动化装备项目规划申请报告
- 2023年鸡西密山市事业单位招聘工作人员笔试真题
- 2024年碳化硅陶瓷纤维项目申请报告
- 2023年北京市石景山区教育委员会教育系统教育人才库教师招聘考试真题
- 2024年多功能轻质复合板项目申请报告范文
- 2024年微信生态项目规划申请报告
- 病毒与生命研究报告
- 2024年无机非金属材料项目规划申请报告
- 消防工程技术标书(暗标)
- 新北师大版七年级下册英语(全册知识点语法考点梳理、重点题型分类巩固练习)(家教、补习、复习用)
- 福建师范大学《计算机应用基础》3答卷答案
- 定向越野教程-中国定向运动协会PPT课件[通用]
- 高聚物的相及相转变中的亚稳态现象
- 《幼儿园中班第一学期家长会》 PPT课件
- 无人机活动方案计划
- 宿舍管理制度及台账
- 造型别致的椅子美术
- 多吃健脑食物,预防老年痴呆症
- 清洗效果监测方法--ppt课件
评论
0/150
提交评论