函数的单调性_基础练习_第1页
函数的单调性_基础练习_第2页
函数的单调性_基础练习_第3页
函数的单调性_基础练习_第4页
函数的单调性_基础练习_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、函数的单调性-基础练习函数的单调性(一)选择题1 .函数y=“2在区间( 8, +oo)上是A.增函数B.既不是增函数又不是减函数C.减函数D.既是增函数又是减函数2 .函数(1) y |x,(2) y "(3) y (4) y x 百中在(,0)上围增函数的有A.(1)和(2)B.(2)和(3) C.(3)和(4) D.(1)和3 .若y=(2k1)x+b是R上的减函数,则有 A、k 2 B、k 23 D、k q2,一、一4.如果函数f(x) = x +2(a1)x+2在区间(一8, 4上是减函数,那么实数a的取值范围是 A. a>-3 B. aw 3 C. a<5D.

2、 a>35.函数y=3x2x2+1的单调递增区间是A、,3 B、9, C、,刍 D、9,44446.若y=f(x)在区间(a, b)上是增函数,则下 列结论正确的是A . y 71T在区间a,b上是减函数 f(x)B . y= f(x)在区间(a, b)上是减函数C. y= |f(x)|2在区间(a, b)上是增函数D. y=|f(x)|在区间(a, b)上是增函数7.设函数f(x)是(一8,+8 )上的减函数,则A. f(a)>f(2a)B. f(a2)vf(a)C. f(a2+a)<f(a)D. f(a2+1)vf(a)(二)填空题1 . (1)函数y 七 的单调区间是

3、(2)函数y 1的单调区间是 1 x(2)函数y收2x 3的减区间是4 .函数f(x+1) = x22x+1的定义域是2, 0,则f(x)的单调递减区间是.5 .已知函数f(x)是区间(0, 十°°)上的减函数,那么f(a2 a + 1)与琛)之间的大小关系3,已知函数f(x) = 2x2+bx可化为f(x) = 2(x + m)2 4的形式.其中b>0.求f(x)为增函 数的区间.4.已知函数f(x), xGR,满足f(1+x) = f(1 x),在1, +8上为增函数,X1<0, X2>0 且 X1 + X2V 2,试比较 f( Xi)与 f( X2)

4、 的大小关系函数的基本性质(1)函数的单调性参考答案(一)选择题1. (B).一 ,一, ( x)、,2. (C).解:当 xC ( 8, 0)时丫=x 为减函数.y = 1为x2 xx吊数函数.y = - 一 = x为增函数.y = x+=x1为增函数.:、凶|x|两函数在( 8, 0)上是增函数.3. (B).解:若 y=(2k 1)x+b 是 R 上的减 函数,则2k-1<01k<2.选(B).4. (B).解:对称轴x 二2(-2)5. (B).解:y = 2x2+3x+1 开口 向下,对称轴 x =-3增区间为一,+ ).46. (B).解:可举一例 y=x 在 xG(

5、一十 8)上是增函数,从而否定了(A)、(C)、(D). 选(B).91 93947. (D) . a2 + 1-a = (a)2+ >0, :a2 + 1>a, <“*)在(一24°°, +0° )上为减函数f(a2+1)vf(a), 选(D).(二)填空题1. (1)( 8, 1)和(1, +°°)(2)(8,1)和(1,+ 00 )2. f(1)=253. (1) 5, -2(2)4. 1, 1.解:令 t=x+1, .一2WxW0,一 1wtw1,,f(t)=(t 1)2 2(t1)+1=t24t + 4)即 f(x)

6、=x2 4x+4=(x 2)2 在区间1, 1上是减函数.23M.2,12,3、 3K7. f(a a+1)Wf(一).解:. a a+1=(a) +> >0,而54244f(x)在(0, +0° )上是减函数,:_2f(a2-a+1)<f(-)46.减解;由已知得y=aX2+bX的抛物b线开口向下,对称轴 X =- 一<2aa<0, b<0,二次函数0,:函数y在(0, 4°° )上是减函数.(三)解答题1.证:任取两个值X1, x2 G (00,f且X1<X2,- f(X1) -f(X2) = X1 x2 +q'

7、;2 X1q2 X2 = X1 X2 +x2 X1=(Xi -X2) - X2J2 X1 + 2 - x2 - 142 x1 +q2 - x27 1- x1<x20 4 , - V2-X1 > -1V2-X2> 2 ,弋 2 X1 +2 x2>1)X1 X2<0.,2 x 1 + p2 - x2 - 1(X1 X 2) i/- < 042 X1 + +2 x2.f(X1)< f(X 2)故外)在(8, 7上是增函数.4x+b+a b , a b .2.解:f(x) = 1H a>b, - a b>0,f(x)x+ bx+ b在区间(一

8、76;0,一 b)和(一b,+ 00 )上都是减函数.3 解:: f(x)=2(x + m)2 4=2x2+ 4mx +2m2 -4.由题意得 2x2+bx=2x2 + 4mx +2m2 4)对 一切x恒成立,比较等式两边对应项的系数得 b = 4m且2m2 4 = 0, < b> 0, ,b = 4J2 .故 f(x) = 2x2 +4v''2x = 2(x+ v,2)2 -4,增区间是-g,+0° ).4.解:. xiV0)x2>0)xi+x2< 2), xi>2+x2>1)即一xj 2 + x2G1)+ °°),又f(x)在1)+°°)上为增函数),f(一 xi)>f(2 + x2),又由 f(1 +x尸f(1 -x),得 f(2 + x2)=f1 + (1 + x2)=f1 (1 + x2)=f( x2).f( x1)>f( x2).22.函数 y=4x mx+5,当 x (-2, +0° )时,是增函数,当xG( 8, 2)时是减函数, 则 f(1) =.3. (1)函数y 3 4x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论