24二项分布(2)_第1页
24二项分布(2)_第2页
24二项分布(2)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、07-08(下)高二数学 选修2-3 概率(8) §2.4 二项分布(2)教学目标:(1)进一步理解次独立重复试验的模型及二项分布的特点;(2)会解决互斥事件、独立重复试验综合应用的问题。教学重点难点: 互斥事件、独立重复试验综合应用教学过程:一复习回顾 1次独立重复试验(1)独立重复试验满足的条件:第一:每次试验是在同样条件下进行的;第二:各次实验中的事件是相互独立的;第三:每次实验只有两种结果;第四:任何一次试验中某事件发生的概率都是一样的。(2)次独立重复试验中事件恰好发生次的概率。2二项分布若随机变量的分布列为,其中则称服从参数为的二项分布,记作。二数学运用1例题:例1:某射

2、手进行射击训练,假设每次射击击中目标的概率为,且各次射击的结果互不影响。(1)求射手在次射击中,至少有两次连续击中目标的概率;(2)求射手第3次击中目标时,恰好射击了4次的概率;(3)设随机变量表示射手第3次击中目标时已射击的次数,求的分布列。例2:一名学生骑自行车上学,从他到学校的途中有4个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是。(1)设为这名学生在途中遇到的红灯次数,求的分布列;(2)设为这名学生在首次停车前经过的路口数,求的分布列(若没有停车认为=4);(3)求这名学生在途中至少遇到一次红灯的概率。例3:某安全生产监督部门对家小型煤矿进行安全检查(安检)。若安检不合格,则必须进行整改。若整改后经复查仍不合格,则强行关闭。设每家煤矿安检是否合格是相互独立的,每家煤矿整改前安检合格的概率是,整改后安检合格的概率是,计算:(1)恰好有三家煤矿必须整改的概率;(2)至少关闭一家煤矿的概率。(精确到)例4:粒种子分种在甲、乙、丙个坑内,每坑粒,每粒种子发芽的概率为,若一个坑内至少有粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种。(1)求甲坑不需要补种的概率;(2)求个坑中需要补种的坑数的分布列;(3)求有坑需要补种的概率。(精确到)三回顾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论