




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、大作业(二)凸轮机构设计(题号:4-A)(一) 题目及原始数据(二) 推杆运动规律及凸轮廓线方程(三) 程序框图(四) 计算程序(五) 程序计算结果及分析(六) 凸轮机构图(七) 心得体会(八) 参考书一 题目及原始数据试用计算机辅助设计完成偏置直动滚子推杆盘形凸轮机构的设计(1)推程运动规律为五次多项式运动规律,回程运动规律为余弦加速度运动规律;(2)打印出原始数据;(3)打印出理论轮廓和实际轮廓的坐标值;(4)打印出推程和回程的最大压力角,以及出现最大压力角时凸轮的相应转角;(5)打印出凸轮实际轮廓曲线的最小曲率半径,以及相应的凸轮转角;(6)打印最后所确定的凸轮的基圆半径。表一 偏置直动
2、滚子推杆盘形凸轮机构的已知参数题号初选的基圆半径R0/mm偏距E/mm滚子半径Rr/mm推杆行程h/mm许用压力角许用最小曲率半径amin124-A155102830700.3Rr 计算点数:N=90q1=60; 近休止角1q2=180; 推程运动角2q3=90; 远休止角3q4=90; 回程运动角4二 推杆运动规律及凸轮廓线方程 推杆运动规律:(1)近休阶段:0o60 o s=0;ds/d=0;=0;(2)推程阶段:60o180 o五次多项式运动规律:Q1=Q-60;s=10*h*Q1*Q1*Q1/(q2*q2*q2)-15*h*Q1*Q1*Q1*Q1/(q2*q2*q2*q2)+6*h*Q
3、1*Q1*Q1*Q1*Q1/(q2*q2*q2*q2*q2);ds/d=30*h*Q1*Q1*QQ/(q2*q2*q2)-60*h*Q1*Q1*Q1*QQ/(q2*q2*q2*q2)+30*h*Q1*Q1*Q1*Q1*QQ/(q2*q2*q2*q2*q2);=60*h*Q1*QQ*QQ/(q2*q2*q2)-180*h*Q1*Q1*QQ*QQ/(q2*q2*q2*q2)+120*h*Q1*Q1*Q1*QQ*QQ/(q2*q2*q2*q2*q2);(3)远休阶段:180o270 o s=h=24;ds/d=0;=0;(4) 回程阶段:2701?开始读入:r0,r0,rt,h或(),e或(lAB、
4、lOA)1,2,3,4,1,2, amin,N计算:s0I=1计算:s,x,y,ds/d,dx/d,dy/d,x,y计算:r0= r0+r0r0= r0=r0是回程?|2?选出1max及相应的凸轮转角1选出2max及相应的凸轮转角2计算:0?|-rtamin?计算a选出|amin|及相应的凸轮转角aminI=I+1IN?打印:x,y,x,y,amin,amin,1max,1max,2max,2max, r0, s结束四 计算程序1.#include#include void main()double r0,or,rr,h,e,q1,q2,q3,q4,a,a11,a22,Q,pi,pa,paa,
5、QQ,A1,A2,B1,B2,C1,C2; /*定义变量*/double xz90,yz90,sz90,x1z90,y1z90,Q1,Q2;double s0,s,x,y,y1,x1,dx,dxx,dy,dyy,ds,dss,sino,coso,p;int N,i,j;r0=19;e=5;h=28;rr=10;q1=60;q2=120;q3=90;q4=90;a11=30;a22=70;or=1;pi=3.141592653;pa=3; /*给已知量赋值*/N=90;A1=0;B1=0;C1=1000;for(; ;)Q=0;C1=1000;QQ=180/pi;r0=r0+or;s0=sqrt
6、(r0*r0-e*e);for(i=1,j=0;i=N;i+,j+)if(Qa11/QQ)break;elseif(aA1)A1=a; A2=Q;else if(Q=60&Qa11/QQ)break;else /*远休阶段*/if(aA1)A1=a;A2=Q;else if(Q=180&Qa22/QQ)break;elseif(aB1)B1=a;B2=Q;else if(Q=270&Qa22/QQ)break;elseif(aB1)B1=a;B2=Q;dx=(ds-e)*sin(Q/QQ)+(s0+s)*cos(Q/QQ);dy=(ds-e)*cos(Q/QQ)-(s0+s)*sin(Q/QQ
7、);dxx=dss*sin(Q/QQ)+(ds-e)*cos(Q/QQ)+ds*cos(Q/QQ)-(s0+s)*sin(Q/QQ);dyy=dss*cos(Q/QQ)-(ds-e)*sin(Q/QQ)-ds*sin(Q/QQ)-(s0+s)*cos(Q/QQ);sino=dx/(sqrt(dx*dx+dy*dy);coso=-dy/(sqrt(dx*dx+dy*dy);x=(s0+s)*sin(Q/QQ)+e*cos(Q/QQ);y=(s0+s)*cos(Q/QQ)-e*sin(Q/QQ);x1=x-rr*coso;y1=y-rr*sino;szj=s;yzj=y;xzj=x;x1zj=x1
8、;y1zj=y1;p=pow(dx*dx+dy*dy,1.5)/(dx*dyy-dy*dxx); /*求理论轮廓曲率半径*/if(p0)paa=(fabs(p)-rr);if(paapa)break;elseif(paaC1)C1=paa;C2=Q;Q=Q+4;if(i=91)break;for(j=0;j90;j+)printf(第%d组数据 ,j+1); /*输出数据*/printf(s=%f ,szj);printf(x=%f,y=%f;,xzj,yzj);printf(x1=%f,y1=%fn,x1zj,y1zj);printf(r0=%fn,r0);printf(推程最大压力角(弧度
9、)=%f,相应凸轮转角=%fn,A1,A2-4);printf(回程最大压力角(弧度)=%f,相应凸轮转角=%fn,B1,B2-4);printf(最小曲率半径=%f,相应凸轮转角=%fn,C1,C2-4);2. matalab绘图x=5.000000 6.625241 8.218205 9.771130 11.276451 12.726835 14.115215 15.434827 16.679242 17.842397 18.918626 19.902685 20.789781 21.575590 22.256286 22.828551 23.298459 23.706615 24.097
10、554 24.507799 24.963745 25.480318 26.060379 26.694836 27.363383 28.035800 28.673715 29.232729 29.664801 29.920768 29.952907 29.717406 29.176650 28.301221 27.071507 25.478865 23.526246 21.228245 18.610551 15.708757 12.566564 9.233376 5.761349 2.201948 -1.397906 -5.000000 -8.578422 -12.115052 -15.5926
11、57 -18.994297 -22.303399 -25.503841 -28.580030 -31.516981 -34.300384 -36.916679 -39.353120 -41.597836 -43.639892 -45.469338 -47.077263 -48.455831 -49.598328 -50.499187 -51.154019 -51.559634 -51.714055 -51.616530 -51.233453 -50.364513 -48.991675 -47.144744 -44.866118 -42.209132 -39.235944 -36.015085
12、-32.618764 -29.120045 -25.590019 -22.095099 -18.694544 -15.438322 -12.365412 -9.502600 -6.863834 -4.450154 -2.250205 -0.241303 1.608997 3.340895 5.000000;y=23.473389 23.067427 22.549082 21.920881 21.185883 20.347670 19.410325 18.378415 17.256967 16.051445 14.767721 13.412051 11.991039 10.511608 8.98
13、0965 7.406568 5.800408 4.185421 2.572459 0.957412 -0.675351 -2.349452 -4.092999 -5.935252 -7.903549 -10.020601 -12.302228 -14.755601 -17.378031 -20.156343 -23.066822 -26.075733 -29.140389 -32.210697 -35.231149 -38.143149 -40.887607 -43.407693 -45.651627 -47.575413 -49.145373 -50.340385 -51.153688 -5
14、1.594160 -51.686950 -51.473389 -50.999220 -50.276588 -49.309014 -48.101211 -46.659063 -44.989598 -43.100947 -41.002313 -38.703920 -36.216966 -33.553566 -30.726696 -27.750129 -24.638366 -21.406568 -18.070478 -14.646352 -11.150869 -7.601061 -4.014222 -0.407825 3.200559 6.792159 10.321065 13.715687 16.
15、907573 19.835197 22.446270 24.699658 26.566822 28.032724 29.096164 29.769520 30.077928 30.057908 29.755535 29.224195 28.522064 27.709391 26.845720 25.987174 25.183912 24.477872 23.900907 23.473389;x1=2.916667 3.864724 4.793953 5.699826 6.577930 7.423987 8.233875 9.003649 9.729558 10.408065 11.035865
16、 11.609900 12.127372 12.585761 12.982834 13.316655 13.637197 13.989954 14.385216 14.841722 15.369724 15.961917 16.595549 17.241474 17.871626 18.461055 18.986391 19.423879 19.748587 19.934923 19.958013 19.795395 19.428612 18.844393 18.035244 16.999369 15.739987 14.264216 12.581802 10.703984 8.642680
17、6.409975 4.017612 1.476005 -1.207747 -4.033175 -6.919656 -9.772424 -12.577583 -15.321465 -17.990702 -20.572290 -23.053652 -25.422699 -27.667890 -29.778285 -31.743603 -33.554270 -35.201463 -36.677159 -37.974167 -39.086169 -40.007747 -40.734411 -41.262621 -41.589804 -41.714366 -41.635699 -41.376364 -4
18、0.850805 -40.008452 -38.855049 -37.403903 -35.676949 -33.704972 -31.526827 -29.187728 -26.736824 -24.224319 -21.698402 -19.202199 -16.770908 -14.429195 -12.188866 -10.046784 -7.982989 -5.959305 -3.919615 -1.795463 0.475989 2.916667;y1=13.692810 13.455999 13.153631 12.787181 12.358432 11.869474 11.32
19、2689 10.720742 10.066564 9.363343 8.614504 7.823697 6.994773 6.131771 5.238896 4.320498 3.219708 1.821843 0.191177 -1.605194 -3.495769 -5.415401 -7.320538 -9.196225 -11.051016 -12.905780 -14.783306 -16.701480 -18.669812 -20.688233 -22.747295 -24.829259 -26.909752 -28.959788 -30.947932 -32.842380 -34
20、.612723 -36.231183 -37.673270 -38.917916 -39.947376 -40.747241 -41.306893 -41.620545 -41.688758 -41.520236 -41.137755 -40.554855 -39.774375 -38.800119 -37.636833 -36.290183 -34.766732 -33.073900 -31.219936 -29.213872 -27.065480 -24.785228 -22.384225 -19.874168 -17.267286 -14.576280 -11.814260 -8.994
21、681 -6.131282 -3.238012 -0.328966 2.581683 5.107582 7.240582 9.322318 11.314634 13.178220 14.874574 16.368490 17.630629 18.639749 19.384302 19.863216 20.085799 20.070803 19.844722 19.439472 18.889620 18.229473 17.490557 16.700486 15.884986 15.075231 14.320076 13.692810;plot(x1,y1,x,y,r):五 程序计算结果及分析基
22、圆半径 r0=24.000000推程最大压力角(弧度)=0.513512,相应凸轮转角=172.000000回程最大压力角(弧度)=0.766377,相应凸轮转角=352.000000最小曲率半径=14.000000,相应凸轮转角=340.000000序号S X Y X1 Y1100.0000005.00000023.4733892.91666713.692810240.0000006.62524123.0674273.86472413.455999380.0000008.21820522.5490824.79395313.1536314120.0000009.77113021.9208815
23、.69982612.7871815160.00000011.27645121.1858836.57793012.3584326200.00000012.72683520.3476707.42398711.8694747240.00000014.11521519.4103258.23387511.3226898280.00000015.43482718.3784159.00364910.7207429320.00000016.67924217.2569679.72955810.06656410360.00000017.84239716.05144510.4080659.36334311400.0
24、0000018.91862614.76772111.0358658.61450412440.00000019.90268513.41205111.6099007.82369713480.00000020.78978111.99103912.1273726.99477314520.00000021.57559010.51160812.585761600000022.2562868.98096512.9828345.23889616600.00000022.8285517.40656813.3166554.32049817640.00985923.2984595.8004
25、0813.6371973.21970818680.074888 23.7066154.18542113.9899541.82184319720.239680 24.0975542.57245914.3852160.19117720760.53804224.5077990.95741214.841722-1.60519421800.99382724.963745-0.67535115.369724-3.49576922841.62176025.480318-2.34945215.961917-5.41540123882.428271 26.060379-4.09299916.595549-7.3
26、2053824923.412322 26.694836-5.93525217.241474 -9.19622525964.566240 27.363383-7.90354917.871626 -11.051016261005.87654328.035800-10.02060118.461055 -12.905780271047.32477228.673715-12.30222818.986391-14.783306281088.88832029.232729-14.75560119.423879-16.7014802911210.54126029.664801-17.37803119.7485
27、87 -18.6698123011612.25517829.920768-20.15634319.934923-20.6886333112014.00000029.952907-23.06682219.958013-22.7472953212415.744822 29.717406-26.07573319.795395 -24.8292593312817.45874029.176650-29.14038919.428612-26.9097523413219.11168028.301221-32.21069718.844393-28.9597883513620.67522827.071507-3
28、5.231149 18.035244-30.9479323614022.12345725.478865-38.143149 16.999369-32.8423803714423.43376023.526246-40.88760715.739987-34.6127233814824.58767821.228245-43.40769314.264216-36.2311833915225.57172918.610551-45.65162712.581802-37.6732704015626.378240 15.708757-47.57541310.703984-38.9179164116027.00
29、6173 12.566564-49.1453738.642680-39.9473764216427.4619589.233376-50.3403856.409975-40.7472414316827.7603205.761349-51.1536884.017612-41.3068934417227.9251122.201948-51.5941601.476005-41.6205454517627.990141-1.397906-51.686950-1.207747-41.6887584618028.000000-5.000000-51.473389-4.033175 -41.520236471
30、8428.000000-8.578422-50.999220-6.919656-41.1377554818828.000000-12.115052-50.276588-9.772424 -40.5548554919228.000000-15.592657-49.309014-12.577583-39.7743755019628.000000-18.994297-48.101211-15.321465-38.8001195120028.000000-22.303399-46.659063-17.990702 -37.6368335220428.000000-25.503841-44.989598
31、-20.572290-36.2901835320828.000000-28.580030-43.100947 -23.053652 -34.7667325421228.000000-31.516981-41.002313-25.422699-33.0739005521628.000000-34.300384-38.703920-27.667890-31.2199365622028.000000-36.916679-36.216966-29.778285-29.2138725722428.000000-39.353120-33.553566-31.743603-27.0654805822828.
32、000000-41.597836-30.726696 -33.554270-24.7852285923228.000000-43.639892-27.750129-35.201463-22.3842256023628.000000-45.469338-24.638366-36.677159 -19.8741686124028.000000-47.077263-21.406568-37.974167-17.2672866224428.000000-48.455831-18.070478-39.086169-14.5762806324828.000000-49.598328-14.646352-4
33、0.007747-11.8142606425228.000000-50.499187-11.150869-40.734411-8.9946816525628.000000-51.154019-7.601061-41.262621-6.1312826626028.000000-51.559634-4.014222-41.589804 -3.2380126726428.000000-51.714055-0.407825-41.714366 -0.3289666826828.000000-51.6165303.200559-41.6356992.5816836927227.965897-51.233
34、4536.792159-41.376364 5.1075827027627.694066-50.36451310.321065-40.850805 7.2405827128027.155697-48.991675 13.715687-40.0084529.3223187228426.361266-47.14474416.907573-38.85504911.3146347328825.326238-44.86611819.835197-37.40390313.1782207429224.070757 -42.20913222.446270-35.676949 14.8745747529622.619261 -39.23594424.699658-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制糖废水处理与再利用考核试卷
- 丰收之歌音乐课件
- 2025二号机冷凝器空冷器清洗合同
- 2025年监理工程师《合同管理》考试多项选择题
- 2025住宅水电安装承包合同
- 2025标准办公室设备租赁合同模板
- 运动与健康教育课:强健身心 全面发展
- 小学生地震安全教育
- 儿童敏感期课件
- 2025版VI设计服务合同示范文本
- 历代书法名作赏析课件
- 质量整改通知单(样板)
- 装配作业指导书
- 建设工程成本计划与控制课件(原)
- IPC-A-610国际标准中英文对照(doc 17)
- 《陕文投应聘表格》word版
- 建设工程围挡标准化管理图集(2022年版)
- (完整word版)中小学教育质量综合评价指标框架(试行)
- 《新概念英语》第一册单词表
- 半泽直树日语字幕台词(一)
- 拌和站地基承载力及抗倾覆计算书
评论
0/150
提交评论