高考数学概率与统计部分知识点梳理_第1页
高考数学概率与统计部分知识点梳理_第2页
高考数学概率与统计部分知识点梳理_第3页
高考数学概率与统计部分知识点梳理_第4页
高考数学概率与统计部分知识点梳理_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高考复习专题之:概率与统计一、概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值.随机事件的概率,其中当时称为必然事件;当时称为不可能事件P(A)=0; 注:求随机概率的三种方法:(一)枚举法 例1如图1所示,有一电路是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路则使电路形成通路的概率是 分析:要计算使电路形成通路的概率,列举出闭合五个开关中的任意两个可能出现的结果总数,从中找出能使电路形成通路的结果数,根据概率的意义计算即可。解:闭合五个开关中的两个,可能出现的结果数有10种,分别是ab、ac、ad、ae、bc、bd、be、cd、ce、de,其

2、中能形成通路的有6种,所以p(通路)= 评注:枚举法是求概率的一种重要方法,这种方法一般应用于可能出现的结果比较少的事件的概率计算.(二)树形图法例2小刚和小明两位同学玩一种游戏游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局例如,小刚出象牌,小明出虎牌,则小刚胜;又如, 两人同时出象牌,则两人平局如果用A、B、C分别表示小刚的象、虎、鼠三张牌,用A1、B1、C1分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少? 分析:为了清楚地看出小亮胜小刚的概率,可用树状图列出所有可能出现的结果,并从中找出小刚胜小明可

3、能出现的结果数。解:画树状图如图树状图。由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种所以P(一次出牌小刚胜小明)=点评:当一事件要涉及两个或更多的因素时,为了不重不漏地列出所有可能的结果,通过画树形图的方法来计算概率(三)列表法例3将图中的三张扑克牌背面朝上放在桌面上,从中随机摸出两张,并用这两张扑克牌上的数字组成一个两位数请你用画树形(状)图或列表的方法求:(1)组成的两位数是偶数的概率;(2)组成的两位数是6的倍数的概率分析:本题可通过列表的方法,列出所有可能组成的两位数的可能情况,然后再找出组成的两位数是偶数的可能情况和组成

4、两位数 是6的倍数的可能情况。解:列的表格如下:根据表格可得两位数有:23,24,32,34,42,43所以(1)两位数是偶数的概率为(2)两位数是6的倍数的概率为点评:当一事件要涉及两个或更多的因素时,为了不重不漏地列出所有可能的结果,通过画树形图的方法来计算概率2.等可能事件的概率(古典概率): P(A)=。3、互斥事件:(A、B互斥,即事件A、B不可能同时发生)。计算公式:P(A+B)P(A)+P(B)。4、对立事件:(A、B对立,即事件A、B不可能同时发生,但A、B中必然有一个发生)。计算公式是:P(A)+ P(B);P()=1P(A);5、独立事件:(事件A、B的发生相互独立,互不影

5、响)P(AB)P(A) P(B) 。提醒:(1)如果事件A、B独立,那么事件A与、与及事件与也都是独立事件;(2)如果事件A、B相互独立,那么事件A、B至少有一个不发生的概率是1P(AB)1P(A)P(B);(3)如果事件A、B相互独立,那么事件A、B至少有一个发生的概率是1P()1P()P()。6、独立事件重复试验:事件A在n次独立重复试验中恰好发生了次的概率(是二项展开式的第k+1项),其中为在一次独立重复试验中事件A发生的概率。提醒:(1)探求一个事件发生的概率,关键是分清事件的性质。在求解过程中常应用等价转化思想和分解(分类或分步)转化思想处理,把所求的事件:转化为等可能事件的概率(常

6、常采用排列组合的知识);转化为若干个互斥事件中有一个发生的概率;利用对立事件的概率,转化为相互独立事件同时发生的概率;看作某一事件在n次实验中恰有k次发生的概率,但要注意公式的使用条件。(2)事件互斥是事件独立的必要非充分条件,反之,事件对立是事件互斥的充分非必要条件;(3)概率问题的解题规范:先设事件A=“”, B=“”;列式计算;作答。二、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件:试验可以在相同的情形下重复进行;试验的所有可能结果是明确可知的,并且不止一个;每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果。它就被称为一个随机

7、试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若是一个随机变量,a,b是常数.则也是一个随机变量.一般地,若是随机变量,是连续函数或单调函数,则也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量可能取的值为:取每一个值的概率,则表称为随机变量的概率分布,简称的分布列.P有性质:; .注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:即可以取05之间的一切数,包括整数、小数、无理数.3. 二项分布:如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次

8、的概率是:其中 于是得到随机变量的概率分布如下:我们称这样的随机变量服从二项分布,记作B(n·p),其中n,p为参数,并记.二项分布的判断与应用.二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“”表示在第k次独立重复试验时,事件第一次发生,如果把k次试验时事件A发生记为,事A不发生记为,那么.根据相互独立事件的概率乘法分式:于

9、是得到随机变量的概率分布列.123kPq qp 我们称服从几何分布,并记,其中5. 超几何分布:一批产品共有N件,其中有M(MN)件次品,今抽取件,则其中的次品数是一离散型随机变量,分布列为.分子是从M件次品中取k件,从N-M件正品中取n-k件的取法数,如果规定时,则k的范围可以写为k=0,1,n.超几何分布的另一种形式:一批产品由 a件次品、b件正品组成,今抽取n件(1na+b),则次品数的分布列为.超几何分布与二项分布的关系.设一批产品由a件次品、b件正品组成,不放回抽取n件时,其中次品数服从超几何分布.若放回式抽取,则其中次品数的分布列可如下求得:把个产品编号,则抽取n次共有个可能结果,

10、等可能:含个结果,故,即.我们先为k个次品选定位置,共种选法;然后每个次品位置有a种选法,每个正品位置有b种选法 可以证明:当产品总数很大而抽取个数不多时,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.三、数学期望与方差.1. 期望的含义:一般地,若离散型随机变量的概率分布为P则称为的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.2. 随机变量的数学期望: 当时,即常数的数学期望就是这个常数本身.当时,即随机变量与常数之和的期望等于的期望与这个常数的和.当时,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.01Pqp单点

11、分布:其分布列为:. 两点分布:,其分布列为:(p + q = 1)二项分布: 其分布列为.(P为发生的概率)几何分布: 其分布列为.(P为发生的概率)3.方差、标准差的定义:当已知随机变量的分布列为时,则称为的方差. 显然,故为的根方差或标准差.随机变量的方差与标准差都反映了随机变量取值的稳定与波动,集中与离散的程度.越小,稳定性越高,波动越小.4.方差的性质.随机变量的方差.(a、b均为常数)01Pqp单点分布: 其分布列为两点分布: 其分布列为:(p + q = 1)二项分布:几何分布: 5. 期望与方差的关系.如果和都存在,则设和是互相独立的两个随机变量,则期望与方差的转化: (因为为

12、一常数).四、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量,位于x轴上方,落在任一区间内的概率等于它与x轴.直线与直线所围成的曲边梯形的面积(如图阴影部分)的曲线叫的密度曲线,以其作为图像的函数叫做的密度函数,由于“”是必然事件,故密度曲线与x轴所夹部分面积等于1.2. 正态分布与正态曲线:如果随机变量的概率密度为:. (为常数,且),称服从参数为的正态分布,用表示.的表达式可简记为,它的密度曲线简称为正态曲线.正态分布的期望与方差:若,则的期望与方差分别为:.正态曲线的性质.曲线在x轴上方,与x轴不相交.曲线关于直线对称.当时曲线处于最高点,当x向左、向右远离时

13、,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.当时,曲线上升;当时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x轴为渐近线,向x轴无限的靠近.当一定时,曲线的形状由确定,越大,曲线越“矮胖”.表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中.3. 标准正态分布:如果随机变量的概率函数为,则称服从标准正态分布. 即有,求出,而P(ab)的计算则是.注意:当标准正态分布的的X取0时,有当的X取大于0的数时,有.比如则必然小于0,如图. 正态分布与标准正态分布间的关系:若则的分布函数通常用表示,且有. 4.“3”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下

14、三步:提出统计假设,统计假设里的变量服从正态分布.确定一次试验中的取值是否落入范围.做出判断:如果,接受统计假设. 如果,由于这是小概率事件,就拒绝统计假设.“3”原则的应用:若随机变量服从正态分布则 落在内的概率为99.7 亦即落在之外的概率为0.3,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即不服从正态分布).时间:90分钟 满分:100分姓名: 学号: 高二( )班一、 选择题:(每小题2分,共36分) 1、从12件同类产品中,有10件是正品,2件是次品,任意抽出3个的必然事件是( D )。A、 3件都是正品 B、至少有1件是次品 C、3件都是次品 D、至少有1件是正品 2

15、、从标有1、2、3、9的9张纸片中任取2张,那么这2张纸片数字之积为偶数的概率是( C )A、 B、 C、 D、 3、有20个零件,其中16个一等品,4个二等品,若从20零件中任取3个,那么至少有1个是一等品的概率是( D )。A、 B、 C、 D、以上都不对 4、假设在200件产品中有3件次品,从中任意抽取5件,其中至少有2件次品的概率是( A )A、 B、 C、 D、 5、某厂大量生产某种小零件,经抽样检验知道其次品率是1%,现把这种小零件每6件装成1盒,那么每盒中恰好含有1件次品的概率是( C )。A、 B、0.01 C、 D、 6、在100个产品中有4件次品,从中抽取2个,则2个都是次

16、品的概率是( C )。A、 B、 C、 D、 7、打靶时,A每打10次可中靶8次,B每打10次可中靶7次,若2人同时射击一个目标,则它们都中靶的概率是( A )。 A、 B、 C、 D、 8、若A以10发8中,B以10发7中,C以10发6中的命中率打靶,3人各射击1次,则3人中只有1人命中的概率是( B )。 A、 B、 C、 D、 9、A、B、C3人射击命中目标的概率分别是,现在3人同时射击一个目标,目标被击中的概率是( C)。A、B、C、D、10、一人在打靶中,连续射击2次,事件“至少有一次中靶”的对立事个是(C)。A、至多有一次中靶B、2次都中靶C、两次都不中靶D、只有1次中靶11、把红

17、、黑、蓝、白4张纸分发给A、B、C、D4个人,每人分得1张,则事件“A分得红纸”与事件“B分得红纸”是(C)。A、对立事件B、不可能事件C、互斥但不对立事件D、以上不对12、袋中有6个白球,4个红球,从中任取2球,抽到白球、红球各1个的概率为(C)。A、B、C、D、以上不对13、把12个人平均分成2组,再从每组里任意指定正、副组长各1人,其中A被选定为正组长的概率是(B)。A、B、C、D、14、A、B、C、D、E站成1排,A在B的右边(A与B可以不相邻)的概率是(C)。A、B、C、D、以上不对15、有一均匀颗的骰子,将它先后掷2次,则掷得的点数之和等于5点的概率是(C)。A、B、C、D、16、

18、把10本不同的书任意放在书架上,其中指定的3本书彼此相邻的概率是(D)A、B、C、D、17、有一批蚕豆种子,如果每一粒发育的概率是0.9,播下15粒种子,那么恰有14粒种子发芽的概率是(D)。A、10.914B、0.914C、D、18、盒中有100个铁钉,其中有90个是合格的,10个是坏的.从中任意抽取10个,其中没有一个坏铁钉的概率是( D )A、0.9B、 C、0.1D、二、 填空题:(每空2分,共44分)1、从1,2,3,,9这9个数字中任取2个数字,(1)2个数字都是奇数的概率是5/18;(2)2个数字之和为偶数的概率是4/9。2、袋中有3个5分的硬币,3个2分的硬币和4个1分的硬币,

19、从中任取3个,总数超过8分的概率是31/120。3、从编号为1100的100张卡中,所得编号是4的倍数的概率是1/4。4、从编号分别为099的100张卡片中,(1)不放回地取2张,则其中恰好有1个编号是0的概率为1/50;(2)有放回地取出2张,其中恰好有1个编号是0的概率为。5、从数字1、2、3、4、5中任取3个,组成没有重复数字的三位数,则:(1)这个三位数是5的倍数的概率是1/5;(2)这个三位数大于400的概率是2/5。6、在100件产品有5件次品,现从中任取3件:(1)都是正品的概率是;(2)至少有1件是次品的概率是;(3)恰好有1件是次品的概率是7、1种新型药品,给1个病人服用后治愈的概率是95%,则服用这种新型药品的4位病人中,至少有3人被治愈的概率是0.99。8、某仪表内装有m个同样的电子元件,其中任意一个电子元件损坏时,这个仪表就不能工作的,如果在某段时间内每个电子元件损坏的概率是P,则这个仪表不能工作的概率是1-(1P)m。9、200名青年工人,250名大学生,300名青年农民在一起联欢,如果任意找其中一名青年谈话,这个青年是大学生的概率是 1/3 。10、A、B、C等10位同学排成1排,则A、B正好排在两头的概率是1/4。11、5个同学站成1排,则:(1)A恰好站在正中间的概率是1/5;(2)A、B恰好站在两端的概率是。12、某射手射击1次,击

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论