微积分与不等式_第1页
微积分与不等式_第2页
微积分与不等式_第3页
微积分与不等式_第4页
微积分与不等式_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、微积分与不等式杨梦婷摘要:本文研究讨论微积分和不等式,首先对微积分和不等式做一个简单的介绍。内容包括其定义;产生过程;历史上的发展与有关的数学家;以及后来的影响。和对不等式的简单介绍。最后重点介绍利用微积分理论研究函数的性质,应用函数的性质证明不等式。关键词:微积分,牛顿莱布尼兹,近代数学,产生,发展,地位,作用,不等式,导数,拉格朗日中值定理,柯西中值定理,泰勒公式正文 一、微积分的定义: 什么是微积分?它是一种数学思想,无限细分就是微分,无限求和就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分(Calculus)是高等数学中研究函数的微分(Differ

2、entiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 定义:设函数(x)在a,b上有界,在a,b中任意插入若干个分点a=x0<x1<.<xn-<xn=b 把区间a,b分成n个小区间x0,x1,.xn-1,xn。每个小区间xi-1,xi上任取一点i(xi-1ixi),作函数值f(i)与小区间长度

3、的乘积f(i)xi,并作出和 如果不论对a,b怎样分法,也不论在小区间上的点i怎样取法,只要当区间的长度趋于零时,和S总趋于确定的极限I,这时我们称这个极限I为函数f(x)在区间a,b上的定积分, 记作 即 微积分的产生和背景: 17世纪到19世纪是近代数学发展的重要时期,在这一时期数学最大和最有影响的发展莫过于微积分的产生和应用。微积分的内容包括极限、微分学、积分学及其应用,是一门研究变化、运动的学科。这门学科的创立不仅极大的推进了数学自身的发展,而且影响和推动了其它学科的发展,并进而对人类社会的生产时间产生影响。本文探讨了微积分在数学中的地位,同时揭示了其对于当代数学的发展以及其它自然、人

4、文、社会科学发展的作用。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287前212)的著作圆的测量和论球与圆柱中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的庄子一书中的?天下篇?中,著有?一尺之棰,日取其半,万世不竭?。三国时期的刘徽在他的割圆术中提出?割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣?。他在1615年测量酒桶体积的新学科一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多个三角形面积之

5、和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的连续不可分几何,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。 微积分的发展: 微积分的正式诞生是在17世纪的后半期,牛顿和莱布尼兹在求积问题与作切线问题之间的互逆关系的基础上创立了微积分的基本定理,并且对无穷小算法进行了归纳与总结,正式创立了微积分这一数学中的重要运算法则。之后,随着数学科学的发展,微积分得到了进一步的发展,其中欧拉对于微积分的贡献最大,他的无穷小分析引论、微分学、积分学三部著作对微积分的进一步丰富和发展起了重要的作用。之后,洛必达、达朗贝尔、拉格朗日、拉普拉斯、勒

6、让德、傅立叶等数学家也对微积分的发展作出了较大的贡献。由于这些人的努力,微分方程、级数论得以产生,微积分也正式成为了数学一个重要分支。17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克牛顿(16421727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关

7、“流数术”的主要著作是求曲边形面积、运用无穷多项方程的计算法和流数术和无穷极数。这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形线、角、体,都看作力学位移的结果。因而,一切变量都是流量。 牛顿指出,“流数术”基本上包括三类问题。 (l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。 (2) 已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。 (3) “流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和

8、曲率,求曲线长度及计算曲边形面积等。 牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。 牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。 莱布尼茨使微积分更加简洁和准确 而德国数学家莱布尼茨(GWLeibniz 16461716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概

9、念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。 莱布尼茨创造的微积分符号,正像印度阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。 牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。牛顿与莱布尼兹的比较: 牛顿( Isaac Newton ,1642 - 1727) 1

10、642 年生于英格兰。1661 年,入英国剑桥大学,1665 年,伦敦流行鼠疫,牛顿回到乡间,终日思考各种问题,运用他的智慧和数年来获得的知识,发明了流数术(微积分) 、万有引力和光的分析。”12 (p. 155)1687 年牛顿发表了它的划时代的科学名著自然哲学的数学原理,流数术(即微积分) 是其三大发现之一。正如爱因斯坦所说的:“牛顿啊你所发现的道路在你的那个时代是一位具有最高思维能力和创造能力的人所发现的唯一道路,你所创造的概念即使在今天仍然指导着我们的物理学思想”。14 (p. 192)“莱布尼兹(Gottfried Wilhelm Leibniz ,1646 - 1716)生于德国。

11、1672 年赴巴黎,在那里接触到惠更斯等一些数学名流,引其进入了数学领域,开始微积分的创造性工作。”12 (p. 165)1684 年莱布尼茨发表了数学史上第一篇正式的微积分文献一种求极限值和切线的新方法。这篇文献是他自1673 年以来的微积分研究的概括与成果,其中定义了微分,广泛地采用了微分符号dx、dy ,还给出了和、差、积、商及乘幂的微分法则。同时包括了微分法在求切线、极大、极小值及拐点方面的应用。两年后,又发表了一篇积分学论文深奥的几何与不变量及其无限的分析,其中首次使用积分符号“”,初步论述了积分(或求积) 问题与微分求切线问题的互逆问题。即今天大家熟知的牛顿- 莱布尼茨公式ba f

12、 ( x) dx = f ( b) - f ( a) ,为我们勾画了微积分学的基本雏形和发展蓝图。牛顿和莱布尼兹用各自不同的方法,创立了微积分学。如果说牛顿接近最后的结论要比莱布尼兹早一些,那么莱布尼兹发表自己的结论要早于牛顿。虽然牛顿的微积分应用远远超过莱布尼兹的工作,刺激并决定了几乎整个十八世纪分析的方向,但是莱布尼兹成功地建立起更加方便的符号体系和计算方法。两位微积分的奠基人,一位具有英国式的处事谨慎,治学严谨的风度,一位具有德国人的哲理思辨心态,热情大胆。由于阴阳差错的时代背景, 过分追求严谨的牛顿迟迟未将自己的发现发表,让莱布尼茨抢了一个发表的头筹。 牛顿和莱布尼兹的哲学观点的不同导

13、致了他们创立微积分的方法不同。牛顿坚持唯物论的经验论,特别重视实验和归纳推理。他在研究经典力学规律和万有引力定律时,遇到了一些无法解决的数学问题,而这些数学问题用欧几里德几何学和16 世纪的代数学是无法解决的,因此牛顿着手研究新的以求曲率、面积、曲线的长度、重心、最大最小值等问题的方法流数法。“牛顿的研究采用了最初比和最后比的方法。他认为流数是初生量的最初比或消失量的最后比。初生量的最初比就是在初生的瞬间的比值,消失量的最后比就是量在消失的瞬间的比值。”14 (p. 180) 这个解释太模糊了,算不上精确的数学概念,只不过是一种直观的描述。最初比和最后比的物理原型是初速度与末速度的数学抽象,在

14、物体作位置移动的过程中的每一瞬间具有的速度是自明的,牛顿就是从这个客观事实出发提出了最初比和最后比的直观概念。这样他就给出了极限的观点。 莱布尼兹的微积分创造始于研究“切线问题”和“求积问题”,他从微分三角形认识到:求曲线的切线依赖于纵坐标之差与横坐标之差的比值;求曲边图形的面积则依赖于在横坐标的无限小区间上的纵坐标之和或无限薄的矩形之和。莱布尼兹认识到求和与求差运算是可逆的。莱布尼兹用无穷小的思想给出了微积分的基本定理,并发展成为高阶微分。莱布尼兹的无穷小是分阶的,这源于他哲学中的单子论思想。“莱布尼兹在单子论中指出:不同的单子其知觉的清晰程度是不一样的,并从一种知觉向另一种知觉过渡和变化,

15、发展就是由单子构成的事物,由低级向高级的不同等级的序列。”16 (p. 91) 可以说,莱布尼兹的无穷小的分阶正是和它的客观唯心论的哲学体系中那个不同层次的单子系统是相对应的。莱布尼兹在微积分的研究过程中,连续性原则成为其工作的基石,而连续性原则是扎根于他哲学中无限的本质的思想。牛顿和莱布尼兹创立微积分的相同点有:从不同的角度创立了一门新的数学学科,使微积分具有广泛的用途并能应用于一般函数;用代数的方法从过去的几何形式中解脱出来;都研究了微分与反微分之间的互逆关系。 牛顿和莱布尼兹创立微积分的不同点主要有:牛顿继承了培根的经验论,对归纳特别青睐。牛顿的微积分明显带着从力学脱胎而来的物理模型的痕

16、迹,以机械运动的数学模型出现,其中的基本概念,如初生量、消失量、瞬、最初比和最后比等概念都来自机械运动,是机械运动瞬间状态的数学抽象。他建立微积分的目的是为了解决特殊问题,强调的是能推广的具体结果。而莱布尼兹强调能够应用于特殊问题的一般方法和算法,以便统一处理各种问题。莱布尼兹在符号的选择上花费了大量的时间,发明了一套富有提示性的符号系统。他把sum(和) 的第一个字母S 拉长表示积分,用dx 表示x 的微分,这套简明易懂又便于使用的符号一直沿用至今。牛顿认为微积分是纯几何的自然延伸,关心的是微积分在物理学中的应用。经验、具体和谨慎是他的工作特点,这种拘束的做法,使他没有能尽情发挥。而莱布尼兹

17、关心的是广泛意义下的微积分,力求创造建立微积分的完善体系。他富于想象,喜欢推广,大胆而且有思辩性,所以毫不犹豫地宣布了新学科的诞生。五、微积分对现代高数的影响: 5.1微积分是近代数学的重要组成内容微积分是近代数学的重要组成内容。微积分是微分学和积分学的总称,微分学包括极限理论、导数理论、微分理论等等,微分学还有一元微分、多元微分,并进一步发展出常微分方程、偏微分方程等等数学知识,微分学的核心思想就是以直代曲,即在微小的邻域内,可以用一段切线段来代替曲线以简化计算过程。积分学由定积分、不定积分理论组成,积分是微分的逆运算,定积分就是把图像无限细分,然后在进行累加,而不定积分是对已知的导数求其原

18、函数,定积分和不定积分联系起来就是著名的牛顿莱布尼兹公式,若 那么 (上限a下限b)=F(a)-F(b),牛顿莱布尼兹公式也就是微积分的基本定理。5.2微积分是近代数学发展的基础著名的数学家、计算机的发明者冯.诺依曼曾说过:“微积分是近代数学中最伟大的成就,对它的重要性无论做怎样的估计都不会过分。”由此可见,微积分在近代数学发展中的作用。微积分是整个近代数学的基础,有了微积分,才有了真正意义上的近代数学。微积分是一种重要的数学思想,它反映了自然界、社会的运动变化的内在规律,它紧密的与物理学和力学联系在一起,它的产生可以说是数学发展的必然。正如恩格斯所说的:“数学中的转折点是笛卡儿的变数。有了变

19、数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了,而它们也就立刻产生,并且是由牛顿和莱布尼茨大体上完发的,但不是由他们发明的”。因此,微积分是近代数学发展的基础。5.3微积分推动了数学自身的发展微积分和解析几何创立之后,就开辟了数学发展的新纪元。通过微积分,数学可以描述运动的事物,描述一种过程的变化。可以说,微积分的创立改变了整个数学世界。微积分的创立,极大的推动了数学自身的发展,同时又进一步开创了诸多新的数学分支,例如:微分方程、无穷级数、离散数学等等。此外,数学原有的一些分支,例如:函数与几何等等,也进一步发展成为复变函数和解析几何,这些数学分支的建

20、立无一不是运用了微积分的方法。在微积分创设后这三百年中,数学获得了前所未有的发展。 5.4微积分推动了其它学科的发展微积分的建立推动了其它学科的发展,数学本身就是其它学科发展的理论基础,尤其是天文学、力学、光学、电学、热学等自然学科的发展。微积分成了物理学的基本语言,而且,许多物理学问题要依靠微积分来寻求解答。微积分还对天文学和天体力学的发展起到了奠定基础的作用,牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三大定律。其它学科诸如化学、生物学、地理学、现代信息技术等这些学科同样离不开微积分的使用,可以说这些学科的发展很大程度上时由于微积分的运用,这些学科运用微积分的方法推导演

21、绎出各种新的公式、定理等,因此微积分的创立为其他学科的发展做出了巨大的贡献。 5.5微积分推动人类文明的发展微积分由于是研究变化规律的方法,因此只要与变化、运动有关的研究都要与微积分有关,都需要运用微积分的基本原理和方法,从这个意义上说,微积分的创立对人类社会的进步和人类物质文明的发展都有极大的推动作用。现在,在一些金融、经济等社会科学领域,也经常运用微积分的原理,来研究整个社会、整个经济的宏观和微观变化。此外,微积分还广泛的运用于各种工程技术上面,从而直接的影响着人类的物质生活,例如:核电工程的建设,火箭、飞船的发射等等,这些人类文明的重大活动都与微积分的运用有着密切的关系。一般地,用纯粹的

22、大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“”、不大于号(小于或等于号)“”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,)连接的式子叫做不等式.通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,z)G(x,y,z )(其中不等号也可以为<,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。这是不等式的定义,但重点介绍利用微积分理论研究函数的性质,应用函数的性质证明不等式。用微积分理论证明不等式的方法 高等数学中所涉及

23、到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量)对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式一、用导数定义证明不等式法1证明方法根据导数定义导数定义:设函数在点。的某个邻域内有定义,若极限存

24、在,则称函数在可导,称这极限为函数在点的导数,记作2证明方法:(1)找出,使得恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究3.适用范围用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的二用可导函数的单调性证明不等式法1.证明方法根据可导函数的一阶导数符号与函数单调性关系定理定理一:若函数在可导,则在内递增(递减)的充要条件是:.定理二:设函数在连续,在内可导,如果在内(或),那么在上严格单调增加(或严格单调减少).定理三:设函数在内可导,若(或),则在内严格递

25、增(或严格递减).上述定理反映了可导函数的一阶导数符号与函数单调性的关系,因此可用一阶导数研究函数在所讨论区间上的单调性.2.证明方法(1)构造辅助函数,取定闭区间;如何构造辅助函数?利用不等式两边之差构造辅助函数;利用不等式两边相同“形式”的特征构造辅助函数;若所证的不等式涉及到幂指数函数,则可通过适当的变形(若取对数)将其化为易于证明的形式,再如前面所讲那样,根据不等式的特点,构造辅助函数.(2)研究在上的单调性,从而证明不等式.3.适用范围利用函数单调性证明不等式,不等式两边的函数必须可导;对所构造的辅助函数应在某闭区间上连续,开区间内可导,且在闭区间的某端点处的值为0,然后通过在开区间

26、内的符号来判断在闭区间上的单调性.三、函数的极值与最大、最小值证明不等式法1证明方法根据极值的充分条件定理定理四(极值的第一充分条件)设在连续,在内可导,(i)若当时,,当时,,则在取得极大值;(ii) 若当时,,当时,,则在取得极小值.定理五(极值的第二充分条件)设在的某领域内一阶可导,在处二阶可导,且,,(i)若,则在取得极大值;(ii)若,则在取得极小值.极值和最值是两个不同的概念.极值仅是在某点的邻域内考虑,而最值是在某个区间上考虑.若函数在一个区间的内部取得最值,则此最值也是极值.极值的充分条件定理反映了可导函数的一阶导数符号或二阶导数在可疑点上的导数符号与函数极值的关系.2.证明方

27、法(1)构造辅助函数,并取定区间.如何构造辅助函数?当不等式两边均含有未知数时,可利用不等式两边之差构造辅助函数;当不等式两边含有相同的“形式”时,可利用此形式构造辅助函数;当不等式形如(或)(为常数)时,可设为辅助函数.(2)求出在所设区间上的极值与最大、最小值.极值与最大、最小值的求法极值求法:(1)求出可疑点,即稳定点与不可导的连续点;(2)按极值充分条件判定可疑点是否为极值点.最大、最小值的求法:(1)闭区间上连续函数的最大、最小值的求法:先求出可疑点,再将可疑点处的函数值与端点处的函数值比较,最大者为最大值,最小者为最小值.(2)开区间内可导函数的最大值、最小值的求法:若在内可导,且

28、有唯一的极值点,则此极值点即为最大值点或最小值点.3.适用范围利用函数单调性证明不等式,不等式两边的函数必须可导;对所构造的辅助函数应在某闭区间上连续,开区间内可导,且在闭区间的某端点处的值为0,然后通过在开区间内的符号来判断在闭区间上的单调性.三、函数的极值与最大、最小值证明不等式法1证明方法根据极值的充分条件定理定理四(极值的第一充分条件)设在连续,在内可导,(i)若当时,,当时,,则在取得极大值;(ii) 若当时,,当时,,则在取得极小值.定理五(极值的第二充分条件)设在的某领域内一阶可导,在处二阶可导,且,,(i)若,则在取得极大值;(ii)若,则在取得极小值.极值和最值是两个不同的概

29、念.极值仅是在某点的邻域内考虑,而最值是在某个区间上考虑.若函数在一个区间的内部取得最值,则此最值也是极值.极值的充分条件定理反映了可导函数的一阶导数符号或二阶导数在可疑点上的导数符号与函数极值的关系.2.证明方法(1)构造辅助函数,并取定区间.如何构造辅助函数?当不等式两边均含有未知数时,可利用不等式两边之差构造辅助函数;当不等式两边含有相同的“形式”时,可利用此形式构造辅助函数;当不等式形如(或)(为常数)时,可设为辅助函数.(2)求出在所设区间上的极值与最大、最小值.极值与最大、最小值的求法极值求法:(1)求出可疑点,即稳定点与不可导的连续点;(2)按极值充分条件判定可疑点是否为极值点.

30、最大、最小值的求法:(1)闭区间上连续函数的最大、最小值的求法:先求出可疑点,再将可疑点处的函数值与端点处的函数值比较,最大者为最大值,最小者为最小值.(2)开区间内可导函数的最大值、最小值的求法:若在内可导,且有唯一的极值点,则此极值点即为最大值点或最小值点.3.适用范围(1)所设函数在某闭区间上连续,开区间内可导,但在所讨论的区间上不是单调函数时;(2)只能证不严格的不等式而不能证出严格的不等式.四、用拉格朗日中值定理证明不等式法1.证明方法根据拉格朗日中值定理拉格朗日中值定理:若函数满足下列条件:(I)在闭区间上连续;()在开区间内可导,则在内至少存在一点,使得.拉格朗日中值定理反映了函

31、数或函数增量和可导函数的一阶导数符号之间的关系.2.证明方法辅助函数,并确定施用拉格朗日中值定理的区间;对在上施用拉格朗日中值定理;利用与的关系,对拉格朗日公式进行加强不等式.3.适用范围当所证的不等式中含有函数值与一阶导数,或函数增量与一阶导数时,可用拉格朗日中值定理来证明.五、用柯西中值定理证明不等式法1.证明方法根据柯西中值定理柯西中值定理:若函数与都在闭区间上连续;与都在开区间内可导;与在内不同时为0;. 则在内至少存在一点,使得 .柯西中值定理反映了两个函数或两个函数增量与它们一阶导数之间的关系.2.证明方法构造两个辅助函数和,并确定它们施用柯西中值定理的区间;对与在上施用柯西中值定

32、理;利用与的关系,对柯西公式进行加强不等式.3.适用范围当不等式含有两个函数的函数值及其一阶导数,或两个函数的函数增量及其一阶导数时,可用柯西中值定理证明.六、上述二、三、四、五种方法小结前面二、三、四、五种方法中,均可利用差式构造函数,但有时应用导数研究函数单调性证明不等式,有时应用导数研究函数极值证明不等式,而有时应用拉格朗日中值定理或柯西中值定理证明不等式.三者有何区别:若所证不等式含有函数值及其导数,宜用中值定理;若所证不等式,其两端函数均可导,且或有一为0时,宜用函数的单调性.若所证不等式的两端函数有不可导时,不能用函数单调性证明,宜用中值定理.若所证不等式,两端函数均可导,但不是单

33、调的函数时,宜用函数的极值来证明.七、用函数的凹凸性证明不等式1.证明方法根据凹凸函数定义及其定理和詹森不等式定义:设为定义在区间I上的函数,若对于I上任意两点和实数,总有,则称为I上的凸函数,若总有,则称为I上的凹函数. 定理六:设为I上的二阶可导函数,则为I上的凸函数(或凹函数)的充要条件是在I上 .命题(詹森不等式) 若在上为凸函数,对任意的且,则.该命题可用数学归纳法证明.函数的凹凸性定理反映了二阶可导函数的二阶导数符号与凹凸函数之间的关系.2.证明方法:定义证明法:将不等式写成定义的形式,构造辅助函数,并讨论在所给区间上的凹凸性.詹森不等式法:对一些函数值的不等式,构造凸函数,应用詹森不等式能快速证此类不等式.3.适用范围当不等式可写成凹凸函数定义的形式或对一些函数值和且能够构造凸函数的不等式.八、用泰勒公式证明不等式法1.证明方法根据泰勒定理泰勒定理:若函数满足如下条件:在闭区间上函数存在直到阶连续导数;在开区间内存在的阶导数,则对任何,至少存在一点,使得:. 泰勒公式揭示了多项式与函数之间的关系.2.证明方法根据已知条件,围绕证明目标,选取恰当的点将函数在这些点展成泰勒展式;根据已知条件,向着有利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论