Matlab软件包与Logistic回归_第1页
Matlab软件包与Logistic回归_第2页
Matlab软件包与Logistic回归_第3页
Matlab软件包与Logistic回归_第4页
Matlab软件包与Logistic回归_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、* *1然后,对log进行通常的线性回归。例如,Logistic型概率函数1 300e2x的图形如下:ezplot(W(1+300*exp(-2*x),0,10)Matlab软件包与 Logistic 回归在回归分析中,因变量y可能有两种情形:(1)y是一个定量的变量,这 时就用通常的regress函数对y进行回归;(2)y是一个定性的变量,比如,y0或1,这时就不能用通常的regress函数对y进行回归,而是使用所谓的Logistic回归。Logistic回归的基本思想是,不是直接对y进行回归,而是先定义一种概率 函数,令Pr Y 1|XiXi,X2X2, ,XnXn事,于是,人们改为考虑y

2、 1 的概率y 1 的概率a 0, bj0要求01。此时,如果直接对进行回归,得到的回归方程可能不满足这个条件。在现实生活中,一般有01。直接求的表达式,是比较困难的一件般的,0 k。人们经过研究发现,令Pr Y 1|X!xX2X2, ,XnXnbX1bnXn即, 是一个Logistic型的函数,效果比较理想于是,我们将其变形得到:log -bnXn* *例1企业到金融商业机构贷款,金融商业机构需要对企业进行评估。例如,Moody公司就是New York的一家专门评估企业的贷款信誉的公司。设:0,企业2年后破产y1企业2年后具备还款能力F面列出美国66家企业的具体情况:YX1X2X30-62.

3、8-89.51.703.3-3.51.10-120.8-103.22.50-18.1-28.81.10-3.8-50.60.90-61.2-56.21.70-20.3-17.41.00-194.5-25.80.5020.8-4.31.00-106.1-22.91.50-39.4-35.71.20-164.1-17.71.3* *0-308.9-65.80.807.2-22.62.00-118.3-34.21.50-185.9-280.06.70-34.6-19.43.40-27.96.31.30-48.26.81.60-49.2-17.20.30-19.2-36.70.80-18.1-6.50

4、.90-98.0-20.81.70-129.0-14.21.30-4.0-15.82.10-8.7-36.32.80-59.2-12.82.10-13.1-17.60.90-38.01.61.20-57.90.70.80-8.8-9.10.90-64.7-4.00.10-11.44.80.9143.016.41.3* *147.016.01.91-3.34.02.7135.020.81.9146.712.60.9120.812.52.4133.023.61.5126.110.42.1168.613.81.6137.333.43.5159.023.15.5149.623.81.9112.57.0

5、1.8137.334.11.5135.34.20.9149.525.12.6118.113.54.0131.415.71.9121.5-14.41.018.55.81.5140.65.81.8134.626.41.8119.926.72.3* *117.412.61.3154.714.61.7153.520.61.1135.926.42.0139.430.51.9153.17.11.9139.813.81.2159.57.02.0116.320.41.0121.7-7.81.6其中,解:在这个破产问题中,1 的次数,1y 1 的次数0,0.5y1,0.51我们讨论log -,概率0,1设 二企

6、业2年后具备还款能力的概率, 即,=企业不破产的概率。因为66个数据有33个为0,33个为1,所以,取分界值0.5,令X1未分配利润总资产X2支付利息前的利润总资产销售额X3总资产建立破产特征变量y的回归方程。* *由于我们并不知道企业在没有破产前概率的具体值,也不可能通过* *X1,X2,X3的数据把这个具体的概率值算出来,于是,为了方便做回归运算,我们取区间的中值,y 0 对应 0.25; y 1,对应0.75。数据表变为:X1X2X30.25-62.8-89.51.70.253.3-3.51.10.25-120.8-103.22.50.25-18.1-28.81.10.25-3.8-50

7、.60.90.25-61.2-56.21.70.25-20.3-17.41.00.25-194.5-25.80.50.2520.8-4.31.00.25-106.1-22.91.50.25-39.4-35.71.20.25-164.1-17.71.30.25-308.9-65.80.80.257.2-22.62.00.25-118.3-34.21.50.25-185.9-280.06.70.25-34.6-19.43.4* *0.25-27.96.31.30.25-48.26.81.6* *0.25-49.2-17.20.30.25-19.2-36.70.80.25-18.1-6.50.90.

8、25-98.0-20.81.70.25-129.0-14.21.30.25-4.0-15.82.10.25-8.7-36.32.80.25-59.2-12.82.10.25-13.1-17.60.90.25-38.01.61.20.25-57.90.70.80.25-8.8-9.10.90.25-64.7-4.00.10.25-11.44.80.90.7543.016.41.30.7547.016.01.90.75-3.34.02.70.7535.020.81.90.7546.712.60.90.7520.812.52.40.7533.023.61.50.7526.110.42.1* *0.7

9、568.613.81.60.7537.333.43.50.7559.023.15.50.7549.623.81.90.7512.57.01.80.7537.334.11.50.7535.34.20.90.7549.525.12.60.7518.113.54.00.7531.415.71.90.7521.5-14.41.00.758.55.81.50.7540.65.81.80.7534.626.41.80.7519.926.72.30.7517.412.61.30.7554.714.61.70.7553.520.61.10.7535.926.42.00.7539.430.51.90.7553.

10、17.11.90.7539.813.81.2* *1,-34.6,-19.4,3.4;X=1,-62.8,-89.5,1.7;1,3.3,-3.5,1.1;1,-120.8,-103.2,2.5;1,-18.1,-28.8,1.1;1,-3.8,-50.6,0.9;1,-61.2,-56.2,1.7;1,-20.3,-17.4,1;1,-194.5,-25.8,0.5;1,20.8,43,1;1,-106.1,-22.9,1.5;1,-39.4,-35.7,1.2;1,-164.1,-17.7,1.3;1,-308.9,-65.8,0.8;1,7.2,-22.6,2.0;1,-118.3,-3

11、4.2,1.5;1,-185.9,-280,6.7;0.7559.57.02.00.7516.320.41.00.7521.7-7.81.6于是,在Matlab1软件包中编程如下,对log1进行通常的线性回归:* *1,-34.6,-19.4,3.4;1,-27.9,6.3,1.3;* *1,20.8,12.5,2.4;1,-48.2,6.8,1.6;1,-492-17.2,0.3;1,-19.2,-36.7,0.8;1,-18.1,-6.5,0.9;1,-98,-20.8,1.7;1,-129,-14.2,1.3;1,-4,-15.8,2.1;1,-8.7,-36.3,2.8;1,-59.2

12、,-12.8,2.1;1,-13.1,-17.6,0.9;1,-38,1.6,1.2;1,-57.9,0.7,0.8;1,-8.8,-9.1,0.9;1,-64.7,-4,0.1;1,-11.4,4.8,0.9;1,43,16.4,1.3;1,47,16,1.9;1,33,4,2.7;1,35,20.8,1.9;1,46.7,12.6,0.9;1,33,23.6,1.5;* *1,53.1,7.1,1.9;1,26.1,10.4,2.1;1,68.6,13.8,1.6;1,37.3,33.4,3.5;1,59,23.1,5.5;1,49.6,23.8,1.9;1,12.5,7,1.8;1,37

13、.3,34.1,1.5;1,35.3,4.2,0.9;1,49.5,25.1,2.6;1,18.1,13.5,4;1,31.4,15.7,1.9;1,21.5,-14.4,1;1,8.5,5.8,1.5;1,40.6,5.8,1.8;1,34.6,26.4,1.8;1,19.9,26.7,2.3;1,17.4,12.6,1.3;1,54.7,14.6,1.7;1,53.5,20.6,1.1;1,35.9,26.4,2;1,39.4,30.5,1.9;* *-0.00371,39.8,13.8,1.2;1,59.5,7,2;1,16.3,20.4,1;1,21.7,-7.8,1.6;a0=0.2

14、5*o nes(33,1);a1=0.75*o nes(33,1);y0=a0;a1;丫=log(1-y0)./y0);b,b in t,r,ri nt,stats =regress(Y,X)rcoplot(r,ri nt)执行后得到结果:b =0.3914-0.0069-0.0093-0.3263bint =0.00730.7755-0.0105-0.0032-0.0156-0.0030-0.5253-0.1273* *1.0561-0.26830.67330.50280.31790.7320 -0.70441.13610.25530.4955 -0.1593 -1.76431.19840.

15、0662-0.99371.39830.99880.96210.30720.49420.81610.3957* *-0.30780.11411.21761.22250.86700.74680.85310.57770.85560.25880.9675 -0.6179 -0.3984 -0.5943 -0.4360-0.7585 -0.4476 -0.5541 -0.5288 -0.36870.21940.9248* *-0.8919-0.7516-0.4266-0.9150-0.06800.0653-0.5082-1.1506-0.8882-0.5701-0.4191-0.3540-0.8289-

16、0.4239-0.5720-0.3449-0.3153-0.4396-0.6967-0.3640-0.8616 rint =* *-0.64772.2799-1.43201.4245-0.39902.5113-1.69751.1608-0.78822.1349-0.92221.9277-1.14981.7856-0.73322.1971-2.06960.6609-0.30702.5791-1.20481.7154-0.97301.9640-1.56261.2441-2.9063-0.6223-0.24992.6466-1.39251.5249-1.7217-0.2657-0.00512.801

17、8-0.46092.4585-0.49092.4152-1.15051.7649-0.95561.9439* *-0.31862.1681-1.0648-1.3238-0.2340-0.2162-0.5911-0.7136-0.6117-0.8868-0.6044-1.1944-0.4914-2.0862-1.8729-2.0558-1.9108-2.2125-1.9186-2.0271-2.0034-1.8340-1.19511.85621.55212.66922.66132.32502.20732.31782.04212.31561.71202.42640.85041.07600.8671

18、1.03890.69551.02340.91900.94591.09671.6340* *-2.35440.5707-1.7819-2.2238-1.8981-2.3643-1.5319-1.3378-1.9834-2.5850-2.3556-2.0422-1.8929-1.8195-2.2961-1.8955-2.0355-1.8178-1.7876-1.9105-2.1620-1.8335-2.32371.16620.72051.04490.53421.39591.46830.96690.28390.57930.90201.05471.11160.63831.04760.89161.128

19、01.15711.03130.76861.10550.6005* *1,-18.1,-28.8,1.1;1,-3.8,-50.6,0.9;stats =0.569927.38410.00000.5526即,得到:R2值二0.5699(说明回归方程刻画原问题不是太好),FJ检验值二27.38410.0000(这个值比较好),与显著性概率0.05相关的p值=0.55260.05,说明变量Xi,X2,X3之间存在线性相关关系。回归方程为:log110.3914 0.0069xi0.0093x20.3263x310.3914 0.0069x-!0.0093x20.3263x3e以及残差图:询2030崛

20、tuHJ通过残差图看出,残差连续的出现在0的上方,或者连续地出现在0的下方,这也暗示变量X1,X2,X3之间存在线性相关。编程计算它们的相关系数:X=1,-62.8,-89.5,1.7;1,3.3,35,1.1;1,-120.8,-103.2,2.5;1,-61.2,-56.2,1.7;* *1,-59.2,-12.8,2.1;1,-20.3,-17.4,1;1,-194.5,-25.8,0.5;1,20.8,43,1;1,-106.1,-22.9,1.5;1,-39.4,-35.7,1.2;1,-164.1,-17.7,1.3;1,-308.9,-65.8,0.8;1,7.2,-22.6,2

21、.0;1,-118.3,-34.2,1.5;1,-185.9,-280,6.7;1,-34.6,-19.4,3.4;1,-27.9,6.3,1.3;1,-48.2,6.8,1.6;1,-49.2,-17.2,0.3;1,-19.2,-36.7,0.8;1,-18.1,-6.5,0.9;1,-98,-20.8,1.7;1,-129,-14.2,1.3;1,-4,-15.8,2.1;1,-8.7,-36.3,2.8;1,-13.1,-17.6,0.9;* *1,35.3,4.2,0.9;1,49.5,25.1,2.6;1,-38,1.6,1.2;1,-57.9,0.7,0.8;1,-8.8,-9.

22、1,0.9;1,-64.7,-4,0.1;1,-11.4,4.8,0.9;1,43,16.4,1.3;1,47,16,1.9;1,33,4,2.7;1,35,20.8,1.9;1,46.7,12.6,0.9;1,20.8,12.5,2.4;1,33,23.6,1.5;1,26.1,10.4,2.1;1,68.6,13.8,1.6;1,37.3,33.4,3.5;1,59,23.1,5.5;1,49.6,23.8,1.9;1,12.5,7,1.8;1,37.3,34.1,1.5;* *1,18.1,13.5,4;1,31.4,15.7,1.9;1,21.5,-14.4,1;1,8.5,5.8,1

23、.5;1,40.6,5.8,1.8;1,34.6,26.4,1.8;1,19.9,26.7,2.3;1,17.4,12.6,1.3;1,54.7,14.6,1.7;1,53.5,20.6,1.1;1,35.9,26.4,2;1,39.4,30.5,1.9;1,53.1,7.1,1.9;1,39.8,13.8,1.2;1,59.5,7,2;1,16.3,20.4,1;1,21.7,-7.8,1.6;X仁X(:,2);X2=X(:,3);X3=X(:,4);corrcoef(X1,X2)corrcoef(X1,X3)corrcoef(X2,X3)执行后得到结果:* *1,-106.1,-22.9,

24、1.5;1,-39.4,-35.7,1.2;ans =ans =ans =1.0000-0.3501-0.35011.0000可见corrcoef(X1,X2)=0.64,这说明,在做回归时,可以去掉捲列,或者去掉沁列。根据经济意义,我们去掉 为列,再进行回归。X=1,-62.8,-89.5,1.7;1,3.3,-3.5,1.1;1,-120.8,-103.2,2.5;1,-18.1,-28.8,1.1;1,-3.8,-50.6,0.9;1,-61.2,-56.2,1.7;1,-20.3,-17.4,1;1,-194.5,-25.8,0.5;1,20.8,43,1;1.00000.64090.

25、64091.00001.00000.04670.04671.0000* *1,-64.7,-4,0.1;1,-11.4,4.8,0.9;1,-164.1,-17.7,1.3;1,-308.9,-65.8,0.8;1,72-22.6,2.0;1,-118.3,-34.2,1.5;1,-185.9,-280,6.7;1,-34.6,-19.4,3.4;1,-27.9,6.3,1.3;1,-48.2,6.8,1.6;1,-49.2,-17.2,0.3;1,-19.2,-36.7,0.8;1,-18.1,-6.5,0.9;1,-98,-20.8,1.7;1,-129,-14.2,1.3;1,-4,-1

26、5.8,2.1;1,-8.7,-36.3,2.8;1,-59.2,-12.8,2.1;1,-13.1,-17.6,0.9;1,-38,1.6,1.2;1,-57.9,0.7,0.8;1,-8.8,-9.1,0.9;* *1,34.6,26.4,1.8;1,43,16.4,1.3;1,47,16,1.9;1,33,4,2.7;1,35,20.8,1.9;1,46.7,12.6,0.9;1,20.8,12.5,2.4;1,33,23.6,1.5;1,26.1,10.4,2.1;1,68.6,13.8,1.6;1,37.3,33.4,3.5;1,59,23.1,5.5;1,49.6,23.8,1.9

27、;1,12.5,7,1.8;1,37.3,34.1,1.5;1,35.3,4.2,0.9;1,49.5,25.1,2.6;1,18.1,13.5,4;1,31.4,15.7,1.9;1,21.5,-14.4,1;1,8.5,5.8,1.5;1,40.6,5.8,1.8;* *-0.01771,19.9,26.7,2.3;1,17.4,12.6,1.3;1,54.7,14.6,1.7;1,53.5,20.6,1.1;1,35.9,26.4,2;1,39.4,30.5,1.9;1,53.1,7.1,1.9;1,39.8,13.8,1.2;1,59.5,7,2;1,16.3,20.4,1;1,21.

28、7,-7.8,1.6;a0=0.25*o nes(33,1);a1=0.75*o nes(33,1);y0=a0;a1;丫=log(1-y0)./y0);X1= X(:,2);X2=X(:,3);X3=X(:,4);E=o nes(66,1);B=E,X2,X3;b,b in t,r,ri nt,stats =regress(Y,B)rcoplot(r,ri nt)执行后得到:b =0.6594* *-1.3769-0.4676bint =0.26721.0516-0.0226-0.0127-0.6702-0.2649r =-0.34780.8917-0.21590.4445-0.03430.

29、24080.59920.21700.83080.73580.36930.7342-0.34970.97490.5361* *-1.11451.68611.15841.30750.27550.16460.74510.86650.79611.14191.10681.19490.54891.02860.82560.69920.41530.9449-0.8603-0.5868-0.4249-0.5020* *-0.3563-0.4149-0.6395-0.5923-0.76600.46881.2219-0.4490-0.7927-0.4540-1.2630-0.09870.3509-0.5921-1.

30、5450-0.9541-0.8139-0.4498-0.2107-0.9275-0.7051-0.8796* *-1.08522.1574-0.3306-0.7441-0.9530-0.6992-0.9299-1.1478 rint =-1.9280-0.7220-1.7877-1.1746-1.6382-1.3743-1.0189-1.3898-0.7833-0.8845-1.2496-0.8853-1.9330* *-1.08522.1574-0.6385-2.1813-0.57240.14353.2286-0.4463-0.2909-1.3275-1.4460-0.8695-0.7514

31、-0.8222-0.4645-0.4883-0.4091-1.0680-0.5813-0.7851-0.9163-1.1827-0.6638-2.4750-2.2082-2.03922.76312.90591.87851.23252.50541.35602.06361.56961.85582.21731.82372.44492.35611.98822.35371.23352.5883* *-2.12301.11901.77522.35972.48432.41442.74822.70202.79882.16592.63842.43642.31462.01322.55350.75431.03451

32、.1894* *-2.49080.7316-2.7155-2.0332-2.2586-2.2133-2.3850-1.0894-0.1453-2.0695-2.4121-2.0716-2.8575-1.7076-1.1978-2.2135-3.1230-2.5686-2.4329-2.0699-1.8258-2.5407-2.32540.48651.20340.97951.02870.85312.02702.58921.17150.82681.16370.33151.51021.89951.02920.03310.66030.80521.17041.40440.68580.9152* *120

33、.6594 0.0177X20.4676x32-1.97551.2629-1.94901.2879-2.36440.8761-2.56430.6582-2.31980.9215-2.53830.6785-2.75540.4598stats =0.471628.1175 0.00000.6681以及残差图:残差图仍然显示变量之间的相关性, 这说明,最开始调查数据时,3个指标没有选好。最后得到:logm 驴i dmiCHFR匚HRFnr3 3SD* *1,-61.2,-56.2,1.7;121 e6594 0.0177X20.4676 x3将企业的具体数据X2,X3代入 的表达式计算,再结合0,0

34、.5y1,0.5金融机构就可以知道,是否应该贷款给这家企业。注:一个通常的Regress回归,可以用R2, R2, F test等参数评价回归结果的好 坏,但对Logistic回归来说,不存在这样简单而令人满意的评价参数,所以, 般应该进行回归诊断。Logistic 回归的诊断所谓的Logistic回归诊断,就是将Xi的原始数据代入求得的回归方程中,计 算y值,看看有多少个由回归方程计算所得的y值与原始的y值不同,因而判断回归方程的好坏。(1)用回归方程111 e.3914 0.0069X!0.0093x20.3263x3进行诊断。在Matlab软件包中,编程诊断X=1,-62.8,-89.5

35、,1.7;1,3.3,-3.5,1.1;1,-120.8,-103.2,2.5;1,-18.1,-28.8,1.1;1,-3.8,-50.6,0.9;* *1,-13.1,-17.6,0.9;1,-20.3,-17.4,1;1,-194.5,-25.8,0.5;1,20.8,43,1;1,-106.1,-22.9,1.5;1,-39.4,-35.7,1.2;1,-164.1,-17.7,1.3;1,-308.9,-65.8,0.8;1,7.2,-22.6,2.0;1,-118.3,-34.2,1.5;1,-185.9,-280,6.7;1,-34.6,-19.4,3.4;1,-27.9,6.3

36、,1.3;1,-48.2,6.8,1.6;1,-49.2,-17.2,0.3;1,-19.2,-36.7,0.8;1,-18.1,-6.5,0.9;1,-98,-20.8,1.7;1,-129,-14.2,1.3;1,-4,-15.8,2.1;1,-8.7,-36.3,2.8;1,-59.2,-12.8,2.1;1,-38,1.6,1.2;1,-57.9,0.7,0.8;* *1,18.1,13.5,4;1,-8.8,-9.1,0.9;1,-64.7,-4,0.1;1,-11.4,4.8,0.9;1,43,16.4,1.3;1,47,16,1.9;1,33,4,2.7;1,35,20.8,1.

37、9;1,46.7,12.6,0.9;1,20.8,12.5,2.4;1,33,23.6,1.5;1,26.1,10.4,2.1;1,68.6,13.8,1.6;1,37.3,33.4,3.5;1,59,23.1,5.5;1,49.6,23.8,1.9;1,12.5,7,1.8;1,37.3,34.1,1.5;1,35.3,4.2,0.9;1,49.5,25.1,2.6;1,31.4,15.7,1.9;1,21.5,-14.4,1;1,8.5,5.8,1.5;1,40.6,5.8,1.8;* *1,34.6,26.4,1.8;1,19.9,26.7,2.3;1,17.4,12.6,1.3;1,5

38、4.7,14.6,1.7;1,53.5,20.6,1.1;1,35.9,26.4,2;1,39.4,30.5,1.9;1,53.1,7.1,1.9;1,39.8,13.8,1.2;1,59.5,7,2;1,16.3,20.4,1;1,21.7,-7.8,1.6;for j=1:66;f=1心+exp(0.3914-0.0069*X(j,2)-0.0093*XQ,3)-0.3263*XQ,4);if f=0.5;jy=0else jy=1endend在Mathematica软件包中编程如下:* *x162.8,3.3,120.8,18.1,3.8,61.2,20.3,194.5,20.8,106

39、.1,39.4,164.1,308.9,7.2,118.3,185.9,34.6,27.9,48.2,49.2,19.2,18.1,98,129,4,8.7,59.2,13.1,38,57.9,8.8,64.7,11.4,43, 47,3.3,35,37.3,35.3,49.5,18.1,31.4,21.5,8.5,40.6,34.6,19.9,17.4,54.7,53.5,35.9,39.4,53.1,39.8,59.5,16.3,21.7;89.5,3.5,103.2,28.8,50.6,56.2,17.4,25.8,4.3,22.9,35.7,17.7,65.8,22.6,34.2,28

40、0,19.4,6.3,6.8,17.2,36.76.5,20.8,14.2,15.8,36.3,12.8,17.6,1.6,0.7,9.1,1, 4.8,16.4,16,4, 20.8,12.6,12.5,23.6,10.4,13.8,33.4,23.1,23.8,7, 34.1,4.2,25.1,13.5,15.7,14.4,5.8, 5.8,26.4,26.7,12.6,14.6,20.6,26.4,30.5,7.1,13.8,7,20.4,7.8J1.7,1.1,2.5,1.1,0.9,1.7,1, 0.5,1, 1.5,x2x346.7,20.8,33, 26.1,68.6,37.3,

41、59, 49.6,12.5,1.2,1.3,0.8,2, 1.5,6.7,3.4,1.3,1.6,0.3,0.8,0.9,1.7,1.3,2.1,2.8,2.1,0.9,1.2,0.8,0.9,0.1,0.9,1.3,1.9,2.7,1.9,0.9,2.4,1.5,2.1,1.6,3.5,5.5,1.9,1.8,1.5,0.9,2.6,4,1.9,1,1.5,1.8,1.8,2.3,1.3,1.7,1.1, 2,1.91.9,1.2,2, 1,1.6 ;1f1E0.39140.0069 x1 j0.0093 x2 j0.3263 x3jIff0.5,0, 1 ; PrintIIII:II IIJJJJ Jy,IIDo y66j,* *0.3914 0.0069为0.0093x20.3263x3执行后得到结果(只列出不相同的):序号y的原始值Logistic回归值序号y的原始值Logistic回归值13423533643753863974084190142104311441245134614014715

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论