与时间序列相关的STATA命令及其统计量的解析_第1页
与时间序列相关的STATA命令及其统计量的解析_第2页
与时间序列相关的STATA命令及其统计量的解析_第3页
与时间序列相关的STATA命令及其统计量的解析_第4页
与时间序列相关的STATA命令及其统计量的解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、与时间序列 相关的 STATA 命 令及其统计量的解析 残差 U 序列相关:DW统计量一一针对一阶自相关的(高阶无效)STATA命令:1. 先回归2. 直接输入 dwstat统计量如何看:查表Q统计量针又t高阶自相关 correlogram-Q-statisticsSTATA命令:1 先回归 reg2 取出残差 predict u,residual( 不要忘记逗号)3 wntestq u Q统计量如何看: p 值越小(越接近0) Q 值越大 统统表示存在自相关具体自相关的阶数可以看自相关系数图和偏相关系数图:STATA命令:自相关系数图 :ac u( 残差 ) 或者窗口操作在Graphics

2、统统 Time-series graphscorrelogram(ac)偏相关系数图 :pac u 或者窗口操作在Graphics 统统 Time-series graphs 统统 (pac)自相关与偏相关系数以及Q 统计量同时表示出来的方法:corrgram u 或者是窗口操作在StatisticsTime-seriesGraphsAutocorrelations&Partialautocorrelations LM 统计量针对高阶自相关STATA 命令:1 先回归 reg2 直接输入命令estate bgodfrey,lags(n) 或者窗口操作在 Statistics Poste

3、stimation( 倒 数 第 二 个 ) Reports andStatistics( 倒数第二个) 在里面选择 Breush-Godfrey LM (当然你在里面还可以找到方差膨胀因子还有DW 统计量等常规统计量)LM 统计量如何看:P 值越小(越接近0 )表示越显着(显着拒绝原假设) ,存在序列相关具体是几阶序列相关,你可以把滞后期写为几,当然默认是1 , (通常的方法是先看图,上面说的自相关和偏相关图以及Q 值,然后再利用 LM 肯定 ) 。平稳时间序列存在自相关的问题的解决方案残差出现序列相关的补救措施:1、一阶自相关:最近简单的方法是用AR(1)模型补救,就是在加一个残差的滞后项

4、即可。2、高阶的自相关:用AR(n)模型补救。AR 模型的识别与最高阶数的确定:可通过自相关系数来获得一些有关AR(p) 模型的信息,如低阶 AR(p)模型系数符号的信息。但是,对于自回归过程AR(p) ,自相关系数并不能帮助我们确定AR(p) 模型的阶数p 。所以,可以考虑使用偏自相关系数k,k ,以便更加全面的描述自相关过程AR(p) 的统计特征。且对于一个AR(p)模型,k,k的最高阶数为p,也即AR(p)模型的偏 自相关系数是p阶截尾的。因此,可以通过识别AR(p)模型的偏自相关系数 的个数,来确定AR(p) 模型的阶数p ,进而设定正确的模型形式,并通过具体的估计方法估计出 AR(p

5、) 模型的参数。如果AR(p)还解决不了则进一步使用:MA(q)模型,以及ARMA(p,q模型。1、 MA(q)MA(q) 的偏自相关系数的具体形式随着q 的增加变得越来越复杂,很难给出一个关于q的一般表达式,但是,一个MA(q)模型对应于一个AR")模型。因此, MA(q) 模型的偏自相关系数一定呈现出某种衰减的形式是拖尾的 。故可以通过识别一个序列的偏自相关系数的拖尾形式,大致确定它应该服从一个 MA(q) 过程。2、ARMA(p,q就是既含有 AR项又含有MA项。我们引入了自相关系数和偏自相关系数这两个统计量来识别 ARMA(p,q) 模型的系数特点和模型的阶数。但是,在实际操

6、作中,自相关系数和偏自相关系数是通过要识别序列的样本数据估计出来的, 并且随着抽样的不同而不同, 其估计值只能同理论上的大致趋势保持一致, 并不能精确的相同。 因此,在实际的模型识别中, 自相关系数和偏自相关系数只能作为模型识别过程中的一个参考, 并不能通过它们准确的识别模型的具体形式。 具体的模型形式,还要通过自相关和偏自相关系数给出的信息, 经过反复的试验及检验,最终挑选出各项统计指标均符合要求的模型形式。注:无论采取什么样的方式,只要能够把残差中的序列相关消除掉,又不会引入新的问题,这样的模型就是最优模型。与平稳性检验及其统计量解析( P212 张晓峒)白噪声检验:1. Q 检验 wnt

7、estq var , lag(n)2.Bartlett 检验 wntestb var , table (表示结果以列显示,而不做图。不加 table 就以图形的方式现实)或者在 Statistics Time-series TEST Bartlett 检验(第四个)画密度图:1 概率密度图命令: pergram var ,generate( 新变量名字 ) 将概率密度的图上所生成的值生成并储存在新变量里,这个不是必须的,只是为了日后方便。窗口: Statistics Time-series Graphs Periodogram( 第五个 )2 累积分布函数图命令: cumsp var ,gen

8、erate( 新变量名字) 解释同上,并且这个生成新变量的功能似乎只能通过命令完成。窗 口 : Statistics Time-series Graphs Cumulative Spectral distribution单位根检验(219)1、 Dickey-Fuller 检验命令:dfuller var (,lags(#)/trend/noconstant/regress/)对变量做ADF检验可以加滞后期或趋势项或不含常数项等等这些取决于你的模型。窗口 : StatisticsTime-seriesTESTADF单位根检验(第一个)在里面你也可以选择滞后期数,常数项等等。如何看结果:原假设为

9、:至少存在一个单位根;备选假设为:序列不存在单位根。如果统计量小于后面的显着性水平给出的值且P 值很大有单位;如果统计量大于后面的显着性水平给出的值且P 值很小无单位根ADF检验需要注意的地方:( 1)必须为回归定义合理的滞后阶数,通常采用 AIC 准则 来确定给定时间序列模型的滞后阶数。在实际应用中,还需要兼顾其他的因素,如系统的稳定性、模型的拟合优度等。( 2)可以选择常数和线性时间趋势,选择哪种形式很重要,因为检验显着性水平的 t 统计量在原假设下的渐进分布依赖于关于这些项的定义。 如果在检验回归中含有常数,意味着所检验的序列的均值不为 0 ,一个简单易行的办法是画出检验序列的曲线图,

10、通过图形观察原序列是否在一个偏离0的位辂随机变动,进而决定是否在检验时添加常数项; 如果在检验回归中含线性趋势项,意味着原序列具有时间趋势。同样,决定是否在检验中添加时间趋势项,也可以通过画出原序列的曲线图来观察。如果图形中大致显示了被检验序列的波动趋势随时间变化而变化,那么便可以添加时间趋势项。2、 Phillips-Perron 检验对变量做 PP命令: pperron var , (,lags(#)/trend/noconstant/regress/) 检验可以加滞后期或趋势项或不含常数项等等这些取决于你的模型。窗口操作: Statistics Time-series TEST PP 单

11、位根检验(第三个)如何看结果:同 ADF 一样 原假设为:至少存在一个单位根;备选假设为:序列不存在单位根。P 值越小(统计量大于各显着性水平值)不存在单位根P 值越大(统计量小于各显着性水平值)存在单位根向量自相关回归VAR模型向量自回归( VAR) 模型是AR 模型的多元扩展,用以反映在一个系统中的多个变量之间的动态影像, 格兰杰因果检验、 脉冲响应、 方差分解都是VAR 模型中重要的分析工具。与VAR模型相关的STATA命令与解析1 VAR模型的估计STATA命令:var 解释变量 (,无常数项noconstant/ 滞后期 lags(n)/ 外生变量exog(varlist)/cons

12、traints(numlist)线性约束的个数注意: 使用线性约束要提前定义, 详情见建模 中的各种小问题 /LIKEPOHL 滞后阶数选择的统计量lutstats )窗口操作:StatisticsMultivariate time seriesVAR第二项)如何看结果:保存估计结果的命令: est store 名称2 VAR 模型平稳性STATA命令:varstable( , graph表示画出图形)如何看结果:特征值都在圆内,即都小于1,表示VAR模型稳定窗口操作: Statistics Multivariate time series VARdiagnostics and tests c

13、heck stability condition of VAR estimates3 VAR 阶数的选择滞后阶数的确定在 VAR 模型中,正确的选择模型的滞后阶数, 对于模型的估计和协整检验都产生一定的影响,小样本情况更是如此。(1) STATA命令:用于VAR模型估计之前varsoc 解释变量 (, 没有常数项 noconstant/ 最高滞后 期 maxlag(#)/ 外 生 变 量 exog(varlist)/ 线 性 约 束 条 件 constraints(numlist) )( 2)命令:用于模型估计之后解释变量(, estimates(estname) ) 其中, estname

14、表示已经估计的VAR模型的名字。(1) (2)如何看结果:找最显着的阶数作为其滞后项(一般会标有 )( 3)命令:用于模型估计之后( Wald 滞后排除约束检验) Varwle窗口操作: Statistics Multivariate time series VARdiagnosticsand tests 第一第二项 如何看结果:看不同阶数上的联合显着性,看P值,越小越显着,表示存在该阶滞后项。4 残差的正态性与自相关检验STATA命令:1. 先进行 var 回归2. varnorm如何看结果:原假设是服从正态分布P 值越小越显着拒绝原假设不服从正态分布P 值越大越不显着拒绝,原假设成立服从正

15、态分布自相关:窗口操作: Statistics Multivariate time series VARdiagnostics and testsLM Test正态分布:窗口操作: Statistics Multivariate time series VAR diagnostics and testsTest for normally(倒数第三项)5 Granger 因果关系检验格兰杰因果关系不同于我们平常意义上的因果关系,它是 指一个变量对于另外一个变量具有延期影响。格兰杰因果关系检验有助于表明变量间的动态影响,有助于提高模型的预测效果。命令格式:1. 先进行 var2. 再进行格兰杰因果

16、检验vargranger如何看结果:看P 值的显着性,越小说明存在越强的因果关系,相反P 值越大说明两者的因果关系不明显。窗 口 操 作 : Statistics Multivariate time series Granger causality test6脉冲响应与方差分解(223)脉冲响应与方差分解是一个问题的两个方面。脉冲响应是衡量模型中的内生变量对一个变量的脉冲 (冲击) 做出的响应 一对多,一个变量向下所引起的其他变量的变动 ,而 方差分解则是如何将一个变量的响应分解到模型中的内生变量 多对一,一个变量的变动向上追溯引起该变动的若干原因 。STATA的if 命令用于计算VAR SV

17、AR VEC模型的脉冲响应、动态乘子和方差分解。注意:该方法的操作使用于 var 、 svar 、 vec 估计之后。( 1) 创建 irf 文件STATA命令:irf create irfname , set(名字)(先进行 var,然后使用这条命令就可以直接把刚刚 var 的结果保存到该irf 文件里,并且只有这条命令是最好用的,其他命令即使可以建立irf 文件但是不能把 var 的结果保存进去,那也是没用的。 )激活 irf 文件显示当前处于活动状态的 irf 文件:STATA 命令:irf set激活(或创建)irf文件:STATA命令:irf set 文件名称创建新的 irf 文件并

18、替换正在活动的 irf 文件:STATA命令:irf set文件名称,replace 清除所有活动的 irf 文件:STATA 命令: irf setclear窗 口 操 作 : Statistics Multivariate time series Manage IRF results and files( 2) 用 irf 文件作图( 223)对于VAR SVAR VEC模型,脉冲响应函数(IRF)的类型包括简单脉冲响应、正交脉冲响应、动态乘子三种,方差分解包括Cholesky 分解和结构分解两种。没种模型可以采用不同的分析工具。窗口操作: Statistics Multivariate

19、time series IRF and FEVD analysis简单的 IRF: (VAR/SVAR/VE2后)命令: irf graph irf (, 使用哪个文件set( 文件名 )/ 脉冲变量 impulse( 变量名 )/ 响应变量 response (内生变量名) )如果不加约束就是默认当前打开的文件动态乘子: (VAR 之后 ) 命令: irf graph dm (,使用哪个文件set( 文件名 )/ 脉冲变量 impulse( 变量名 )/ 响应变量 response (内生变量名) )方差分解:(VAR/SVAR/VE2后)命令: irf graph fevd(, 使用哪个文

20、件set( 文件名 )/ 脉冲变量 impulse( 变量名 )/ 响应变量 response (内生变量名) )联合图表:将多个脉冲响应图或方差分解图结合起来)命令: irf cgraph (irfname 脉冲变量 响应变量 方差分解的方法 fevd/IRF的方法 irf) (irfname 脉冲变量 响应变量 IRF 方法 irf/ 方差分解的方法fevd)叠加图表: (将多个脉冲响应图或方差分解图叠加起来)命令: irf ograph(irfname 脉冲变量 响应变量 方差分解的方法 fevd/IRF的方法 irf) (irfname 脉冲变量 响应变量 IRF 方法 irf/ 方差

21、分解的方法fevd)( 3) I rf 列表STATA命令:irf table IRF 方法irf/方差分解方法fevd联合列表: (将多个脉冲响应图或方差分解列表结合起来)命令: irf ctable (irfname 脉冲变量 响应变量 方差分解的方法 fevd/IRF的方法 irf) (irfname 脉冲变量 响应变量 IRF 方法 irf/ 方差分解的方法fevd)( 4) I rf 其他命令 命令:irf describeirf describe , detail7 VAR 模型的预测 227窗口操作: Statistics Multivariate time series Dyn

22、amicforecast命令格式1 (对于VAR SVAR模型):fcast compute prefix命令格式2 (对于VECM莫型):fcast compute prefix对预测进行作图变量名 )命令: fcast graph prefixvar(prefix小结大概流程:估计VAR模型var y x zest store VAR1根据信息准则确定VAR模型的最优滞后结束,根据结果重新估计varsoc x z , maxlag(#)var *( 全部变量,或者ln* 所有的对数变量) , lags(1/3) ( 比如最优的滞后期为 3 ,滞后期 123)est store VAR2 考

23、察 VAR 模型的平稳性varstable , estimates(VAR2) graph dlabel ( 画图并标出具体数值) 检验 VAR 模型残差的正态分布特征和自相关特征varnorm , jbera estimates(VAR2) 对各变量进行Granger 因果关系检验vargranger (, estimates ( VAR2) ) 绘制脉冲响应图以及预测误差方差分解var y x z , lags(1/3)irf create irfname , set ( 名称 )irf graph irf (, estimates (名称)irf table fevd(, estimat

24、es (名称)/ 预测区间n<8step(n) 根据 VAR 模型的估计结果进行预测预测n期(n<8)fcast compute prefix( , step(n)fcast compute f_(, step(n)将 VAR 模型与IRF 相结合的窗口操作:Statistics Multivariate time series Basic VAR约翰逊协整检验协整检验是对非平稳变量进行回归的必要前提。只有存在协整关系,协整回归才有意义。在各种协整检验方法中,Johansen(1998)在VAR框架下的特征值检验和迹检验应用最为普通命令格式为:vecrank var1 var2 (

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论