八年级数学上册第一章勾股定理教学分析与建议北师大版【教案】_第1页
八年级数学上册第一章勾股定理教学分析与建议北师大版【教案】_第2页
八年级数学上册第一章勾股定理教学分析与建议北师大版【教案】_第3页
八年级数学上册第一章勾股定理教学分析与建议北师大版【教案】_第4页
八年级数学上册第一章勾股定理教学分析与建议北师大版【教案】_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、用心 爱心 专心1北师大版八年级数学(上)第一章 勾股定理教学分析与建议一、 主要内容勾股定理在数学的发展历史上起过重要的作用,在现实世界中也有着广泛的应用。它 的发现、证明和应用都蕴涵着丰富的数学的、文化的内涵。它是几何学中的重要的定理之一。教材为学生设计了自主探索勾股定理内容以及验证它的素材和空间,教学中要使学生 经历观察、归纳、猜想和验证的数学发现过程教材的设计过程中,希望学生能够利用方格纸探索勾股定理内容,并且能利用拼图验证勾股定理,再次就是通过测量获得勾股定理的逆定理教材提供了较为丰富的历史的或现实的例子,以展示勾股定理及其逆定理的应用,体 现其文化价值。当然限于学生的已有知识,问题

2、解决中所涉及的数据均为完全平方数,本 章更多的关注学生对勾股定理及其逆定理的理解和应用,不追求复杂计算。二,评价建议1,关注对探索勾股定理等活动的评价。一方面要关注学生是否积极参与,是否能与同伴 进行有效合作交流;另一方面也要关注学生在活动中能否进行积极的思考,能否探索 出解决问题的方法,是否能够进行积极的思考,在活动中学生所表现出的归纳,概括 能力,学生是否能够有条理地表达活动过程和所获得的结论等。2, 关注考查对勾股定理及其逆定理的理解和应用。注意评价时,不应以复杂运算为主, 我们应更另关注学生对有关结论的正确使用。三、教学目标l经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合

3、情推理能力,体 会数形结合的思想2掌握勾股定理,了解利用拼图验证勾股定理的方法,并能运用勾股定理解决一些实际问题。3掌握判断一个三角形是直角三角形的条件,并能运用它解决一些实际问题。4通过实例了解勾股定理的历史和应用,体会勾股定理的文化价值。用心 爱心 专心2四、教材特点勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,在数学发展中 起过重要的作用,在现实世界中也有着广泛的应用。勾股定理的发现、验证和应用蕴涵着 丰富的文化价值。勾股定理从边的角度进一步刻画了直角三角形的特征,通过对勾股定理 的学习,学生将在原有的基础上对直角三角形有进一步的认识和理解。为了使学生能更好地认识勾股定理

4、、发展推理能力,教科书设计了在方格纸上通过计 算面积的方法探索勾股定理的活动,同时又安排了用拼图的方法验证勾股定理的内容,试 图让学生经历观察、归纳、猜想和验证的数学发现的过程,同时也渗透了代数运算与几何 图形之间的关系(如将a2,b2,c2与正方形的面积联系起来,再由比较同一正方形面积的几 种不同的代数表示得到勾股定理) 。勾股定理的逆定理也有着重要的地位, 但在本章中不要求学生从逻辑上对定理与逆定 理进行一般的认识,因此,教科书中没有给出勾股定理逆定理的名称,而是称之为直角三 角形的判别条件。教科书以历史上古埃及人作直角的方法引人“三角形的三边长如果满足a2+b2=c2是否能得到一个直角三

5、角形”的问题,然后通过让学生按已知数据作出三角形, 并测量三角形三个内角的度数来获得一个三角形是直角三角形的有关边的条件。为了让学生更好地体会勾股定理及逆定理在解决实际问题中的作用, 教科书提供了较 为丰富的历史的或现实的例子来展示它们的应用,体现了它们的文化价值。限于学生已有 的知识,有关应用中涉及的数均为完全平方数,本章更多关注的是对勾股定理的理解和实 际应用,而不追求计算上的复杂。在学生学习了无理数之后,可以再利用勾股定理解决一 些涉及无理数运算的实际问题。五、课时安排建议1探索勾股定理2课时2能得到直角三角形吗1课时3蚂蚁怎样走最近1课时六、具体内容分析1、 探索勾股定理(第一课时)本

6、节核心内容:勾股定理及它的探索过程在教学中,我们可以通过介绍我国数学家华罗庚的建议向宇宙发射勾股定理的图 形与外星人联系,用心 爱心 专心3并说明勾股定理是我国古代数学家于2000年前就发现了的,激发学生 对勾股定理的兴趣和自豪感, 引入课题 其中课本中的, 做一做”采用的是数方格的方法; “议一议”对归纳基础的加强;“想一想”是一个有趣的实际问题;教科书设计了在方格纸上通过计算面积的方法探索勾股定理的活动, 教师应鼓励学生 充分经历这一观察、归纳、猜想的过程!鼓励学生尝试求出方格中三个正方形的面积,比 较这三个正方形的面积,由此得到直角三角形三边的关系,通过对几个特殊例子的考察归 纳出直角三

7、角形三边之间的一般规律,运用自己的语言表达探索过程和所得结论当然教 学时,教师也可以根据学生的实际情况,设计其他的探索情景。勾股定理揭示了直角三角形三边之间的数量关系,是直角三角形的一个重要性质如 有条件,还可以利用计算机(几何画板软件动态显示)的优越条件,提供足够充分的典型 材料形状大小、位置发生变化的各种直角三角形,让学生观察分析,归纳概括,探索 出直角三角形三边之间的关系式,并通过与锐角、钝角三角形的对比,强调直角三角形的 这个特有性质,启发学生独立分析问题、发现问题、总结规律的教学方法教学中要注意:a,多采取小组合作讨论的方式b,给学生留下充分的探索实践的时间和空间c,介绍相关的背景材

8、料2,探索勾股定理(第二课时) 本节核心内容:用拼图来验证勾股定理及其一个简单运用。 在勾股定理的探索和验证过程中,数形结合的思想有较多的体现教师在教学中应注 意渗透这种思想,鼓励学生从代数表示联想到有关的几何图形,由几何图形联想到有关的 代数表示,这有助于学生认识数学的内在联系。例如,在探索勾股定理的过程中,教师应 引导学生由正方形的面积想到a2,b2,c2,而在勾股定理的验证过程中,教师又应引导学生 由数“a2+b2=c2想到正方形的面积。 ” 在教学中,“议一议”使学生进一步体会直角三角 形三边的关系,要给学生充分的讨论空间。勾股定理的发现、验证及应用的过程蕴涵了丰富的文化价值,古代很多

9、国家和民族都 对勾股定理有不同程度的认识和了解,我国是最早了解勾股定理的国家之一当考虑等腰 直角三角形的斜边时,这一定理又导致了无理数的产生一数学历史上的第一次数学危机。 教师应鼓励每一个学生阅读教科书提供的勾股定理的历史, 并可以向学生再展示一些历史 资料。教师还可以引导学生自己从书籍、网络上查阅资料,了解更多的有关勾股定理的内 容,体会它的文化价值用心 爱心 专心43,能得到直角三角形吗本节的核心内容是:掌握直角三角形的判别条件。课本创设了古埃及人利用结绳的方法作出直角, 教师还可以创设其他现实情境或鼓励 学生自己寻找有关问题,进一步展现勾股定理和逆定理在解决问题中的作用,认识现实世 界中

10、蕴涵着丰富的数学信息。在教学中,“做一做”是用计算、画图再测量的方法归纳出 勾股定理的逆定理。归纳的基础应尽可能的厚实一些,但此处有一定的作图困难。教师可 对其正确性予以说明。还要让学生熟悉一些常用的勾股数。3, 蚂蚁怎样走最近本节的核心内容是:勾股定理及其判别条件的简单运用。这一节内容,可以让学生先自主探索,再引导其考虑侧面展开图来解决问题,培养空 间观念。 本节课要以教师为主导, 以学生为主体, 以知识为载体, 以培养学生的思维能力, 动手能力,探究能力为重点的教学思想。在课堂教学中,尽量为学生提供“做中学”的空 间,小组合作,探究交流得到了真正体现。数学源于生活,并运用于生活是整节课的一

11、条 暗线贯穿其中。这节课的目标具体的可以分为:1、初步运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。2、能在实际问题中构造直角三角形,提高建模能力,进一步深化对构造法和代数计算法和理解。3、在解决实际问题的过程中,体验空间图形展开成平面图形时,对应的点,线的位 置关系,从中培养空间观念。4、在解决实际问题的过程中,进一步培养从“形”到“数”和从“数”到“形”的 转化,培养学生的转化、推理能力。5、通过研究勾股定理的历史,了解中华民族文化的发展对数学发展的贡献,激发学 生的爱国热情和学习数学的兴趣。总之,我们要培养学生从空间到平面的想象能力,运用数学方法解决实际问题

12、的创新 能力及探究意识。用心 爱心 专心5课题学习拼图与勾股定理一,教学建议l本课题具有一定的挑战性,学生可以采用小组合作的方式进行研究。在小组活动 中,教师应提供给学生充分实践、 探索和交流的时间, 鼓励他们积极思考解决问题的方法, 并与他人进行合作与交流。教师应深入到各小组中倾听学生们的讨论,了解他们的思考过 程并给予一定的指导在小组活动的基础上,教师要组织各小组在全班充分交流自己的成 果。2教科书只是提供了该课题研究的基本线索,教师可以根据学生的特点自己设置若 干小课题,以保证所有的人都能参与本课题的讨论但由于课题学习的主要目标是培养学 生综合运用所学知识和方法解决挑战性问题的能力,不宜

13、将课题分解成一个一个的小问 题,限制学生的思维二,评价建议1由于课题学习更关注解决问题的过程,所以教师在评价时应首先关注学生在小组 活动中的表现。对此的评价主要包括两个方面一是学生参与活动的积极程度,包括是否 积极思考,探索解决问题的方法;是否乐于与小组其他成员进行合作,愿意与同伴交流各 自的想法;是否有解决问题的自信心,能够不回避遇到的困难等。二是学生在活动中所表 现出来的思考水平,包括是否能够通过动手操作和独立思考获得解决问题的思路;能否找 到有效解决问题的方法,尝试从不同的角度去思考问题;是否理解他人的思路,并在与同 伴交流中获益;是否有反思自己思考过程的意识等,即要对学生的动手操作能力

14、、推理能 力、空间观念、口头表达能力等作出综合的评价2教师要注意观察学生的活动过程,特别是及时记录学生独特的解决问题的想法。 教师要注意了解学生的差异(思维特征与活动水平) ,学生只要能积极投人到活动中都要 给予鼓励,同时促进每一个学生得到不同的发展。三,教学目标:1,经历综合运用已有知识解决问题的过程,在此过程中,加深对勾股定理、整式运 算、面积等的认识。2经历用不同的拼图方法验证勾股定理的过程!体验解决同一问题方法的多样性, 进一步体会勾股定理的文化价值。用心 爱心 专心63,通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间的内在联 系。4通过丰富有趣的拼图活动,经历观察、比

15、较、拼图、计算,推理、交流等过程, 发展空间观念和有条理地思考与表达的能力,获得一些研究问题与合作交流的方法与经验。5通过获得成功的体验和克服困难的经历,增进数学学习的信心。四,教材特点勾股定理是数学中一个非常重要的定理。长期以来,人们对它进行了大量的研究,找 到了许多不同的验证方法。这些方法不仅验证了勾股定理,而且丰富了研究问题的手段, 促进了数学的发展。本课学习给出了中国古代历史上利用拼图的方法对勾股定理进行验证的几种思路, 也 介绍了国外一些验证勾股定理的方法。在本课题中,设计了丰富的拼图活动!学生经过自 己的操作与思考,一方面经历了验证勾股定理的过程,感受了解决同一问题的不同方法, 激

16、发了数学学习的兴趣,积累了数学活动经验;另一方面通过对中外多种方法的了解,开 阔了视野,感受到了古代人民的聪明才智。课题学习中给出的验证方法,虽然都与图形的拼摆、分割有关,但又各有特点第一 部分的拼图方法与第一章第一节中验证方法有共同之处,都是将数与形联系起来,由所拼 图形的面积表达式之间的关系,通过代数恒等变形验证勾股定理。第二部分介绍的是“青 朱出人图”,它是我国古代数学家利用拼图来验证勾股定理的一种著名方法,这种方法是 利用拼图来说明以勾、股为边长的正方形(分别称为朱和青) ,经过割补可以拼成以弦为 边长的正方形在这部分的学习中,主要以学生的实践活动为主。第三部分介绍了意大利著名画家达

17、芬奇对勾股定理的一种研究结果,他的方法新颖,具有一定的操作性,可以开阔学生的视野、丰富学生的想像。五,课时安排建议2课时六,教学建议本节课的核心内容是:用多种拼图方法来验证勾股定理的过程。第一课时可以完成议一议。在教学中,教师可以首先回顾第一章中进行过的验证勾股用心爱心专心7定理的过程,指明本课题学习的目的,激发学生的探索欲望。课题提出后,教师可以不马 上进入到下一环节,而是让学生先独立思考和讨论一段时间在学生思维遇到困难而又迫切 希望行到帮助的时候,自然引入下一环节。在做议一议的时候,教师应该先让学生观察图1,让学生感知由数到形的过程。然后鼓励学生用同样的思路摆出不同的图形,并让学生 得到充

18、分的实践。最后让成功者上来演示,强化他的成功的感觉,激发其他同学渴求成功 的欲望。完成做一做,在做一做中,必须要让学生先回家准备好两副五巧板,在做五巧板 的时候本节课的核心内容:利用五巧板来验证勾股定理。第二课时,完成青朱出入图的讨论与想一想。经过上一节课五巧板的拼图,学生已有 一点的经验。教师现在展示“青朱出入图”学生会感觉到亲切。并让学生根据拼图帮助理 解“青朱出入图”意思。学生理解后拼出展示过的“青朱出入图”,学生通过拼图,从而抓住拼图的要点,即用已有的两副“五巧板”拼成分别“长”在直角三角形三边上的三个 正方形。注意,教学中,要给学生留有充分的时间和空间来拼摆图形,引导要适度,不要 限制学生的思维。同时鼓励学生在拼图的过程中进行交流合作。整个教学过程中,教师要注意引导学生及时反思自己的活动过程以及在小组活动中的 表现,积累数学活动与合作交流的经验。素材精选:1.如图是-个三级台阶, 它的每-级的长宽和咼分别为20dm、3dm 2dm,A和B是这个台阶两个相对的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论