复件211二次根式_第1页
复件211二次根式_第2页
复件211二次根式_第3页
复件211二次根式_第4页
复件211二次根式_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、221. 二次根式(1) 教学内容 二次根式的概念及其运用 教学目标 理解二次根式的概念,并利用(a0)的意义解答具体题目 提出问题,根据问题给出概念,应用概念解决实际问题 教学重难点关键 1重点:形如(a0)的式子叫做二次根式的概念; 2难点与关键:利用“(a0)”解决具体问题 教学过程 回顾当a是正数时,表示a的算术平方根,即正数a的正的平方根当a是零时,等于0,它表示零的平方根,也叫做零的算术平方根当a是负数时,没有意义概括(a0)表示非负数a的算术平方根,也就是说,(a0)是一个非负数,它的平方等于a即有: (1)0(a0);(2)=a(a0)形如(a0)的式子叫做二次根式注意在二次根

2、式中,字母a必须满足a0,即被开方数必须是非负数例x是怎样的实数时,二次根式有意义?分析要使二次根式有意义,必须且只须被开方数是非负数解被开方数x-10,即x1所以,当x1时,二次根式有意义思考等于什么?我们不妨取a的一些值,如2,-2,3,-3,分别计算对应的a2的值,看看有什么规律: 概括:当a0时,; 当a0时,这是二次根式的又一重要性质如果二次根式的被开方数是一个完全平方,运用这个性质,可以将它“开方”出来,从而达到化简的目的例如: =2x(x0); 练习 1.x取什么实数时,下列各式有意义.(1); (2);(3); (4) 拓展 例当x是多少时,+在实数范围内有意义? 分析:要使+

3、在实数范围内有意义,必须同时满足中的0和中的x+10 解:依题意,得 由得:x- 由得:x-1 当x-且x-1时,+在实数范围内有意义例(1)已知y=+5,求的值(答案:2)(2)若+=0,求a2004+b2004的值(答案:) 归纳小结(学生活动,老师点评) 本节课要掌握: 1形如(a0)的式子叫做二次根式,“”称为二次根号 2要使二次根式在实数范围内有意义,必须满足被开方数是非负数 布置作业 1教材P41.222.1 二次根式(2) 教学内容 1(a0)是一个非负数; 2()2=a(a0) 教学目标 理解(a0)是一个非负数和()2=a(a0),并利用它们进行计算和化简 通过复习二次根式的

4、概念,用逻辑推理的方法推出(a0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a0);最后运用结论严谨解题 教学重难点关键 1重点:(a0)是一个非负数;()2=a(a0)及其运用2难点、关键:用分类思想的方法导出(a0)是一个非负数;用探究的方法导出()2=a(a0) 教学过程 一、复习引入 (学生活动)口答 1什么叫二次根式? 2当a0时,叫什么?当a<0时,有意义吗? 老师点评(略) 二、探究新知 议一议:(学生分组讨论,提问解答) (a0)是一个什么数呢? 老师点评:根据学生讨论和上面的练习,我们可以得出 (a0)是一个非负数 做一做:根据算术平方根的意义填空:(

5、)2=_;()2=_;()2=_;()2=_;()2=_;()2=_;()2=_ 老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4 同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2 = a(a 0) 例1 计算 1()2 2(3)2 3()2 4()2 分析:我们可以直接利用()2=a(a0)的结论解题解:()2 =,(3)2 =32·()2=32·5=45,()2=,()2= 三、巩固练习 计算下列各式的值:()2 ()2 ()2 ()2 (4)2 四、应用拓展 例2 计算1()2(x0)

6、 2()2 3()2 4()2分析:(1)因为x0,所以x+1>0;(2)a20;(3)a2+2a+1=(a+1)0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)20所以上面的4题都可以运用()2=a(a0)的重要结论解题 解:(1)因为x0,所以x+1>0,()2=x+1 (2)a20,()2=a2(3)a2+2a+1=(a+1)2 , 又(a+1)20,a2+2a+10 ,=a2+2a+1 (4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 , 又(2x-3)204x2-12x+90,()2

7、=4x2-12x+9例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3五、归纳小结本节课应掌握: 1(a0)是一个非负数; 2()2=a(a0);反之:a=()2(a0) 六、布置作业 1教材P4.3.4 22.1 二次根式(3) 教学内容 a(a0) 教学目标 理解=a(a0)并利用它进行计算和化简 通过具体数据的解答,探究=a(a0),并利用这个结论解决具体问题 教学重难点关键 1重点:a(a0) 2难点:探究结论 3关键:讲清a0时,a才成立 教学过程 一、复习引入 老师口述并板收上两节课的重要内容; 1形如(a0)的式子叫做二次根式; 2(a0)是一个非

8、负数; 3()2a(a0) 那么,我们猜想当a0时,=a是否也成立呢?下面我们就来探究这个问题 二、探究新知 (学生活动)填空: =_;=_;=_; =_;=_;=_ (老师点评):根据算术平方根的意义,我们可以得到: =2;=0.01;=;=;=0;= 因此,一般地:=a(a0) 例1 化简 (1) (2) (3) (4)分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用=a(a0)去化简解:(1)=3 (2)=4 (3)=5 (4)=3 三、巩固练习 教材P4.3.4 四、应用拓展 例2 填空:当a0时,=_;当a<0时,=_,

9、并根据这一性质回答下列问题(1)若=a,则a可以是什么数? (2)若=-a,则a可以是什么数? (3)>a,则a可以是什么数? 分析:=a(a0),要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a0时,=,那么-a0 (1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知=a,而a要大于a,只有什么时候才能保证呢?a<0 解:(1)因为=a,所以a0; (2)因为=-a,所以a0;(3)因为当a0时=a,要使>a,即使a>a所以a不存在;当a<0时,=-a,要使>a,即使-a>a,a<0综上,a<0例3当x>2,化简- 五、归纳小结 本节课应掌握:=a(a0)及其运用,同时理解当a<0时,a的应用拓展 六、布置作业 1先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下: 甲的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论