高三数学复习提纲(文科)Word版_第1页
高三数学复习提纲(文科)Word版_第2页
高三数学复习提纲(文科)Word版_第3页
高三数学复习提纲(文科)Word版_第4页
高三数学复习提纲(文科)Word版_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高 三 数 学 复 习 提 纲(文科)排列、组合、二项式定理一基础知识:1.分类计数原理(加法原理).2.分步计数原理(乘法原理).3.排列数公式 =.(,N*,且)注:规定.4.排列恒等式 (1);(2);(3); (4);(5).(6) .5.组合数公式 =(N*,且).6.组合数的两个性质(1)= ;(2) +=.注:规定.7.组合恒等式(1);(2);(3); (4)=;(5).(6).(7). (8).(9).(10).8.排列数与组合数的关系 .9单条件排列以下各条的大前提是从个元素中取个元素的排列.(1)“在位”与“不在位”某(特)元必在某位有种;某(特)元不在某位有(补集思想)

2、(着眼位置)(着眼元素)种.(2)紧贴与插空(即相邻与不相邻)定位紧贴:个元在固定位的排列有种.浮动紧贴:个元素的全排列把k个元排在一起的排法有种.注:此类问题常用捆绑法;插空:两组元素分别有k、h个(),把它们合在一起来作全排列,k个的一组互不能挨近的所有排列数有种.(3)两组元素各相同的插空 个大球个小球排成一列,小球必分开,问有多少种排法?当时,无解;当时,有种排法.(4)两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为.9分配问题(1)(平均分组有归属问题)将相异的、个物件等分给个人,各得件,其分配方法数共有.(2)(平均分组无归属问题)将相异的·个物体等

3、分为无记号或无顺序的堆,其分配方法数共有.(3)(非平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,件,且,这个数彼此不相等,则其分配方法数共有.(4)(非完全平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,件,且,这个数中分别有a、b、c、个相等,则其分配方法数有 .(5)(非平均分组无归属问题)将相异的个物体分为任意的,件无记号的堆,且,这个数彼此不相等,则其分配方法数有.(6)(非完全平均分组无归属问题)将相异的个物体分为任意的,件无记号的堆,且,这个数中分别有a、b、c、个相等,则其分配方法数有.(7)(限定分组有归属问题)将相异的()个物体

4、分给甲、乙、丙,等个人,物体必须被分完,如果指定甲得件,乙得件,丙得件,时,则无论,等个数是否全相异或不全相异其分配方法数恒有.10.二项式定理 ;二项展开式的通项公式.二项式系数具有下列性质:(1) 与首末两端等距离的二项式系数相等;(2) 若n为偶数,中间一项(第1项)的二项式系数最大;若n为奇数,中间两项(第和1项)的二项式系数最大;(3)11.F(x)=(ax+b)n展开式的各项系数和为f(1);奇数项系数和为;偶数项的系数和为;概率一基础知识:1.等可能性事件的概率.2.互斥事件A,B分别发生的概率的和P(AB)=P(A)P(B)164.个互斥事件分别发生的概率的和P(A1A2An)

5、=P(A1)P(A2)P(An)3.独立事件A,B同时发生的概率P(A·B)= P(A)·P(B).4.n个独立事件同时发生的概率 P(A1· A2·· An)=P(A1)· P(A2)·· P(An)5.n次独立重复试验中某事件恰好发生k次的概率6. 如果事件A、B互斥,那么事件A与、与及事件与也都是互斥事件;7.如果事件A、B相互独立,那么事件A、B至少有一个不发生的概率是1P(AB)1P(A)P(B);8.如果事件A、B相互独立,那么事件A、B至少有一个发生的概率是1P()1P()P();概率与统计一基础知识

6、:1.离散型随机变量的分布列的两个性质(1);(2).2.数学期望170.数学期望的性质(1).(2)若,则.(3) 若服从几何分布,且,则.4.方差5.标准差=.6.方差的性质(1);(2)若,则.(3) 若服从几何分布,且,则.7.方差与期望的关系.8.正态分布密度函数,式中的实数,(>0)是参数,分别表示个体的平均数与标准差.9.标准正态分布密度函数.10.对于,取值小于x的概率.二基本方法和数学思想1.理解随机变量,离散型随机变量的定义,能够写出离散型随机变量的分布列,由概率的性质可知,任意离散型随机变量的分布列都具有下述两个性质:(1)pi0,i=1,2,; (2) p1+p2

7、+=1;2.二项分布:记作B(n,p),其中n,p为参数,并记;3.记住以下重要公式和结论:x1X2xnPP1P2Pn(1)期望值E x1p1 + x2p2 + + xnpn + ; (2)方差D ;(3)标准差;(4)若B(n,p),则Enp, Dnpq,这里q=1-p;4.掌握抽样的三种方法:(1)简单随机抽样(包括抽签法和随机数表法);(2)系统抽样,也叫等距离抽样;(3)分层抽样,常用于某个总体由差异明显的几部分组成的情形;5.总体分布的估计:用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;6.正态总体的概

8、率密度函数:式中是参数,分别表示总体的平均数与标准差;7.正态曲线的性质:(1)曲线在x 时处于最高点,由这一点向左、向右两边延伸时,曲线逐渐降低;(2)曲线的对称轴位置由确定;曲线的形状由确定,越大,曲线越矮胖;反过来曲线越高瘦;(3)曲线在x轴上方,并且关于直线x= 对称;8.利用标准正态分布的分布函数数值表计算一般正态分布的概率 P(x1<<x2),可由变换而得,于是有P(x1<<x2);9.假设检验的基本思想:(1)提出统计假设,确定随机变量服从正态分布;(2)确定一次试验中的取值a是否落入范围;(3)作出推断:如果a,接受统计假设;如果a,由于这是小概率事件,

9、就拒绝假设;导数 一基础知识:1.在处的导数(或变化率或微商).2.瞬时速度.3.瞬时加速度.4.在的导数.5. 函数在点处的导数的几何意义函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.6.几种常见函数的导数(1) (C为常数).(2) .(3) .(4) . (5) ;.(6) ; .7.导数的运算法则(1).(2).(3).8.复合函数的求导法则 设函数在点处有导数,函数在点处的对应点U处有导数,则复合函数在点处有导数,且,或写作.10.判别是极大(小)值的方法当函数在点处连续时,(1)如果在附近的左侧,右侧,则是极大值;(2)如果在附近的左侧,右侧,则是极小值.二基本方法和数

10、学思想1.导数的定义:f(x)在点x0处的导数记作;2.根据导数的定义,求函数的导数步骤为:(1)求函数的增量(2)(2)求平均变化率; (3)取极限,得导数;3.可导与连续的关系:如果函数y=f(x)在点x0处可导,那么函数y=f(x)在点x0处连续;但是y=f(x)在点x0处连续却不一定可导;4.导数的几何意义:曲线yf(x)在点P(x0,f(x0))处的切线的斜率是相应地,切线方程是5.导数的应用:(1)利用导数判断函数的单调性:设函数yf(x)在某个区间内可导,如果那么f(x)为增函数;如果那么f(x)为减函数;如果在某个区间内恒有那么f(x)为常数;(2)求可导函数极值的步骤:求导数

11、;求方程的根;检验在方程根的左右的符号,如果左正右负,那么函数y=f(x)在这个根处取得最大值;如果左负右正,那么函数y=f(x)在这个根处取得最小值;(3)求可导函数最大值与最小值的步骤:求y=f(x)在(a,b)内的极值;将y=f(x)在各极值点的极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个是最小值6导数与函数的单调性的关系与为增函数的关系。能推出为增函数,但反之不一定。如函数在上单调递增,但,是为增函数的充分不必要条件。时,与为增函数的关系。若将的根作为分界点,因为规定,即抠去了分界点,此时为增函数,就一定有。当时,是为增函数的充分必要条件。与为增函数的关系。为增函数,一定可以推出,但反之不一定,因为,即为或。当函数在某个区间内恒有,则为常数,函数不具有单调性。是为增函数的必要不充分条件。函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论