




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数y = A s i n(x +91)的图像(1)物理意义:y = Asin(®x+中)(A0, «0), xqo,+ 8)表示一个振动量时,A称 2 -1 .为振幅,T = f =称为频率,(0X+中称为相位,中称为初相。(2)函数y = Asin(切x +邛)+k的图像与y =sin x图像间的关系:函数y = sin x的图像纵坐标不变,横坐标向左( 中0)或向右(邛0)平移|中|个 单位得y =sin (x十中)的图像;1 函数y = sin(x+甲)图像的纵坐标不变,横坐标变为原来的一,得到函数y =sin(8x +邛)的图像; 函数y = sin(8x +邛)
2、图像的横坐标不变,纵坐标变为原来的A倍,得到函数y =Asin(cox +邛)的图像; 函数y = Asin(sx +中)图像的横坐标不变,纵坐标向上(k0)或向下(k0),得到y = Asin (cox十平)十k的图像。要特别注意,若由y=sin(ox)得到y=sin(sx+中)的图像,则向左或向右平移应平一邛,、移|个单位。中对y =sin(x +邛)图像的影响一般地,函数y =sin(x+中)的图像可以看做是把正弦函数曲线上所有的点向(当中0时)或向(当中0时)平移阿个单位长度得到的注意:左右平移时可以简述成“:8对y =sin ®x图像的影响函数y =sin x x石R仰0且
3、6=1),的图像可以看成是把正弦函数上所有的点的1 ,、横坐标(0 A1)或(0 <3 <1)到原来的一倍(纵坐标不变)。A对y = A sin x的影响函数y =Asinx , x w R(A > 0且A # 1)的图像可以看成是把正弦函数上所有的点的纵坐标(A >1)或(0<A <1)到原来的 A倍得到的由y =sin x至I y =A sin(切x +中)的图像变换先平移后伸缩:先伸缩后平移:【典型例题】例1将y =sin x的图象怎样变换得到函数y=2sin2x十1的图象.4练习:将y = cosx的图象怎样变换得到函数y=cos'2x -
4、|的图象.,44 二例2、把y =3cos(2x+&)作如下变换:(1)向右平移三个单位长度;2(2)纵坐标不变,横坐标变为原来的(3)横坐标不变,纵坐标变为原来的13 ;3-;4(4)向上平移1.5个单位长度,则所得函数解析式为4 二练习:将y =2sin(2x+-)+2做下歹U变换:(1)向右平移2个单位长度;(2)横坐标缩短为原来的一半,纵坐标不变;(3)纵坐标伸长为原来的4倍,横坐标不变;精品资料(4)沿y轴正方向平移1个单位,最后得到的函数y=f(x) =例3、把y = f(x)作如下变换:(1)横坐标伸长为原来的1.5倍,纵坐标不变;(2)向左平移上个单位长度;3(3)(4
5、)3纵坐标变为原来的-,横坐标不变;533 二沿y轴负方向平移2个单包,取后得到函数丫 = 7$访(万乂十7),求y = f (x).练习1 :将y =4sin(gx+:)作何变换可以得至I y = sinx.3练习2:对于y =3sin(十 x)作何变换可以得到y=sinx.6 5例4、把函数y = sin(0x+3)(0 >0,|3 |<二)的图象向左平移 二个单位长度,所得23曲线的一部分图象如图所示,则(jiA. =1,、:=一 B. 二 1,:二66D. = 2,;=-练习:7、右图是函数y = Asingx+3)(xW R)在区间x6工o6 -1(_£,区)上
6、的图象,只要将 6 6(1) y = sin x的图象经过怎样的变换?(2) y =cos2x的图象经过怎样的变换?【课堂练习】3T1、为了得到函数y =sin(3x+ 的图象,只需把函数y =sin3x的图象TTTTTTTTA、向左平移 - B、向左平移 C、向右平移 -D、向右平移 2、为得到函数y = cos '2x +|的图像,只需将函数y = sin2x的图像()3A、向左平移55个长度单位B、向右平移55个长度单位1212C、向左平移 曰个长度单位D、向右平移 曰个长度单位3、要得到函数y=sinx的图象,只需将函数y = cos 1 x -1的图象().3)JTJTA、向
7、右平移=个单位 B、向右平移二个单位C、向左平移二个单位D、向633左平移个单位 04、为了得到函数y=sin(2x-力的图象,可以将函数y = cos2x的图象()6A、向右平移|个单位长度B、向右平移;个单位长度C、向左平移1个单位长度D、向左平移三个单位长度315、把函数尸皿(X。)的图象上所有点向左平行移动3个单位长度,再把所得图象上所有点的横坐标缩短到原来的1 .、2倍(纵坐标不变),得到的图象所表示的函数是(A、C、y =sin(2x-J 3. ,c . n、y =sin(2x +), 3B、y = sin(- +) , xw R2 6D、y = sin(2x +),xw R6、为
8、了得到函数y =sin(2x E)的图像,只需把函数y =sin(2x + 土)的图像( 36A、向左平移三个长度单位4C、向左平移三个长度单位2B、向右平移工个长度单位4D、向右平移三个长度单位27、已知函数f (x) =sinx+)(x w R四>0)的最小正周期为n,为了得到函数4g(x)=cos x勺图象,只要将y = f(x)的图象A、向左平移E个单位长度8C、向左平移上个单位长度 4B、D、向右平移工个单位长度8向右平移土个单位长度 48.将函数y=sinx的图象向左平移)的单位后,得到函数y=sin (x-、)的图象,则中等于B.C.D.11!1.(2009山东卷理)将函数
9、y =sin2x的图象向左平移ji一个单位,再向上平移1个4单位,所得图象的函数解析式是().A. y = cos 2xB. y = cos2x 1C. y = 1 sin(2x -)42D. y =2sin x2. (2009天津卷理)已知函数f (x) =sin® x+)(xw R,b >0)的最小正周期为n ,4为了得到函数g(x) =cosx的图象,只要将y = f(x)的图象A向左平移2个单位长度 B向右平移2个单位长度C向左平移亍个单位长度D向右平移亍个单位长度3. (09山东)要得到函数y =sinx的图象,只需将函数y = cos"_三i的图象I 3
10、JA、向右平移工个单位 B、向右平移工个单位 63C、向左平移三个单位D、向左平移工个单位364. (10江苏卷)为了得到函数y =2sin(?+),xw R的图像,只需把函数36y =2 sin x,x W R的图像上所有的点A、向左平移工个单位长度,再把所得各点的横坐标缩短到原来的1倍(纵坐 63标不变)B、向右平移三个单位长度,再把所得各点的横坐标缩短到原来的1倍(纵坐 63标不变)C、向左平移6个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)D、向右平移6个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)5、(2010全国卷2理数)(7)为了得到函数y =sin(2x-工)的图像,只需把函数3兀y =sin(2x -) 的图像
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高层建筑施工中的安全风险控制措施
- 2025年中小企业管理培训计划
- 无害化废弃物处理流程实施方案
- 采矿行业质量通病防治措施
- 2025年二年级数学学期总结与反思计划
- 七年级学生数学能力提升计划
- 慈善活动外包协议
- 电力设施安全与治安防护管理计划
- 高一历史多媒体教学计划
- 商业中心绿化养护及环境管理措施
- 2024年郑州轨道工程职业学院单招职业适应性测试题库含答案
- 生物医学体系的确立与发展
- 八年级数学下册期中考试卷(可打印)
- 江苏省南京市秦淮区2023-2024学年七年级下学期期中数学试卷(含答案)
- ISO27001:2022信息安全管理手册+全套程序文件+表单
- 劳动节英文介绍节日由来文化风俗劳动名言课件
- 数字金融与经济高质量发展:理论分析与实证检验
- 《免疫学检验》课程标准(含课程思政)
- 网络安全的前沿技术与趋势
- 用工审批单(模板)
- 极光大数据:王者荣耀研究报告
评论
0/150
提交评论