高三20空间中的平行关系Word版_第1页
高三20空间中的平行关系Word版_第2页
高三20空间中的平行关系Word版_第3页
高三20空间中的平行关系Word版_第4页
高三20空间中的平行关系Word版_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、空间中的平行关系题型1:共线、共点和共面问题例1(1)如图所示,平面ABD平面BCD 直线BD ,M 、N 、P 、Q 分别为线段AB 、BC 、CD 、DA 上的点,四边形MNPQ 是以PN 、QM 为腰的梯形。试证明三直线BD 、MQ 、NP 共点。证明:四边形MNPQ 是梯形,且MQ 、NP 是腰,直线MQ 、NP 必相交于某一点O 。O 直线MQ ;直线MQ 平面ABD ,O 平面ABD。同理,O 平面BCD ,又两平面ABD 、BCD 的交线为BD ,故由公理二知,O 直线BD ,从而三直线BD 、MQ 、NP 共点。DCBAEFHG(2)如图所示,在四边形ABCD中,已知ABCD,

2、直线AB,BC,AD,DC分别与平面相交于点E,G,H,F求证:E,F,G,H四点必定共线证明:ABCD,AB,CD确定一个平面又ABE,AB,E,E,即E为平面与的一个公共点。同理可证F,G,H均为平面与的公共点两个平面有公共点,它们有且只有一条通过公共点的公共直线,badcGFEAabcdHK图1图2E,F,G,H四点必定共线。例2已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面。证明:1o若当四条直线中有三条相交于一点,不妨设a,b,c相交于一点A,但AÏd,如图1所示:直线d和A确定一个平面。又设直线d与a,b,c分别相交于E,F,G,则A,E,F,

3、G。A,E,A,Ea,a。同理可证b,c。a,b,c,d在同一平面内。2o当四条直线中任何三条都不共点时,如图2所示:这四条直线两两相交,则设相交直线a,b确定一个平面。设直线c与a,b分别交于点H,K,则H,K。又 H,Kc,c,则c。同理可证d。a,b,c,d四条直线在同一平面内题型2:异面直线的判定与应用例3已知:如图所示,a b a ,b b ,a b A ,c a ,c a 。求证直线b 、c 为异面直线证法一:假设b 、c 共面于g 由A a ,a c 知,A c ,而a b A,a b a , A g ,A a。又c a , g 、a 都经过直线c 及其外的一点A, g 与a 重

4、合,于是a g ,又b b。又g 、b 都经过两相交直线a 、b ,从而g 、b 重合。 a 、b 、g 为同一平面,这与a b a 矛盾 b 、c 为异面直线证法二:假设b 、c 共面,则b ,c 相交或平行。(1)若b c ,又a c ,则由公理4知a b ,这与a b A 矛盾。(2)若b c P ,已知b b ,c a ,则P 是a 、b 的公共点,由公理2,P a ,又b c P ,即P c ,故a c P ,这与a c 矛盾综合(1)、(2)可知,b 、c 为异面直线。证法三: a b a ,a b A , A a 。 a c , A c ,在直线b 上任取一点P(P 异于A),则

5、P a(否则b a ,又a a ,则a 、b 都经过两相交直线a 、b ,则a 、b 重合,与a b a 矛盾)。又c a ,于是根据“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线”知,b 、c 为异面直线。例4(1)已知异面直线a,b所成的角为70,则过空间一定点O,与两条异面直线a,b都成60角的直线有( )条A1 B2 C3 D4(2)异面直线a,b所成的角为,空间中有一定点O,过点O有3条直线与a,b所成角都是60,则的取值可能是( )A30 B50 C60 D90解析:(1)过空间一点O分别作a,b。将两对对顶角的平分线绕O点分别在竖直平面内转动,总能得到与 都

6、成60角的直线。故过点 O与a,b都成60角的直线有4条,从而选D。(2)过点O分别作a、b,则过点O有三条直线与a,b所成角都为60,等价于过点O有三条直线与所成角都为60,其中一条正是角的平分线。从而可得选项为C。题型3:线线平行的判定与性质例5设和为不重合的两个平面,给出下列命题: (1)若内的两条相交直线分别平行于内的两条直线,则平行于;(2)若外一条直线与内的一条直线平行,则和平行;(3)设和相交于直线,若内有一条直线垂直于,则和垂直;(4)直线与垂直的充分必要条件是与内的两条直线垂直。上面命题中,真命题的序号 (写出所有真命题的序号). 【解析】 考查立体几何中的直线、平面的垂直与

7、平行判定的相关定理。真命题的序号是(1)(2)例6两个全等的正方形ABCD和ABEF所在平面相交于AB,MAC,NFB,且AM=FN,求证:MN平面BCE。证法一:作MPBC,NQBE,P、Q为垂足,则MPAB,NQAB。MPNQ,又AM=NF,AC=BF,MC=NB,MCP=NBQ=45°RtMCPRtNBQMP=NQ,故四边形MPQN为平行四边形MNPQPQ平面BCE,MN在平面BCE外,MN平面BCE。证法二:如图过M作MHAB于H,则MHBC,连结NH,由BF=AC,FN=AM,得 NH/AF/BE由MH/BC, NH/BE得:平面MNH/平面BCEMN平面BCE。题型4:线

8、面平行的判定与性质例7(本小题满分12分)E A B C F E1 A1 B1 C1 D1 D 如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB/CD,AB=4, BC=CD=2, AA=2, E、E、F分别是棱AD、AA、AB的中点。(1) 证明:直线EE/平面FCC;(2) 求二面角B-FC-C的余弦值。 E A B C F E1 A1 B1 C1 D1 D F1 O P 解法一:(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1,连接A1D,C1F1,CF1,因为AB=4, CD=2,且AB/CD,所以CDA1F1,A1F1CD为平行四边形,所以CF1/A1D,

9、又因为E、E分别是棱AD、AA的中点,所以EE1/A1D,所以CF1/EE1,又因为平面FCC,平面FCC,所以直线EE/平面FCC.(3) 因为AB=4, BC=CD=2, 、F是棱AB的中点,所以BF=BC=CF,BCF为正三角形,取CF的中点O,则OBCF,又因为直四棱柱ABCD-ABCD中,CC1平面ABCD,所以CC1BO,所以OB平面CC1F,过O在平面CC1F内作OPC1F,垂足为P,连接BP,则OPB为二面角B-FC-C的一个平面角, 在BCF为正三角形中,在RtCC1F中, OPFCC1F, 在RtOPF中,所以二面角B-FC-C的余弦值为.解法二:(1)因为AB=4, BC

10、=CD=2, F是棱AB的中点,E A B C F E1 A1 B1 C1 D1 D x y z M 所以BF=BC=CF,BCF为正三角形, 因为ABCD为等腰梯形,所以BAC=ABC=60°,取AF的中点M,连接DM,则DMAB,所以DMCD,以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,则D(0,0,0),A(,-1,0),F(,1,0),C(0,2,0),C1(0,2,2),E(,0),E1(,-1,1),所以,设平面CC1F的法向量为则所以取,则,所以,所以直线EE/平面FCC. (2),设平面BFC1的法向量为,则所以,取,则, 所以,由图可知二面角B-FC-

11、C为锐角,所以二面角B-FC-C的余弦值为. 例8如图,平面平面,四边形与都是直角梯形,()证明:、四点共面;()设,求二面角的大小BACDEF解析:()面面,面以为原点,以,所在直线为轴,轴,轴,建立如图所示的空间直角坐标系不妨设,则,C、D、E、F四点共面()设,则,设平面的法向量为,由,得,设平面的法向量为由,得,由图知,二面角为锐角,其大小为题型5:面面平行的判定与性质例9如图,正方体ABCDA1B1C1D1 的棱长为a。证明:平面ACD1 平面A1C1B 。证明:如图, A1BCD1 是矩形,A1B D1C 。又D1C 平面D1CA ,A1B 平面D1CA , A1B 平面D1CA。同理A1C1 平面D1CA ,又A1C1 A1B A1 , 平面D1CA 平面BA1C1 例10P是ABC所在平面外一点,A、B、C分别是P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论